loading
back to top
Upload tài liệu trên DOC24 và nhận giải thưởng hàng tuần Tìm hiểu thêm
Chú ý: Các vấn đề liên quan đến học tập, hãy để lại bình luận trực tiếp trên trang để được phản hồi nhanh hơn phần hỗ trợ trực tuyến của facebook. Xin cảm ơn!

Đề thi thử đại học cao đăng môn toán năm 2013

Chia sẻ: tieulongnhan90@gmail.com | Ngày: 2016-01-26 19:00:07 | Trạng thái: Được duyệt

Chủ đề: đề thi toán   

377
Lượt xem
2
Tải về





Bên trên chỉ là 1 phần trích dẫn trong tài liệu để xem hết tài liệu vui lòng tải về máy. Đề thi thử đại học cao đăng môn toán năm 2013

Đề thi thử đại học cao đăng môn toán năm 2013

Đề thi thử đại học cao đăng môn toán năm 2013



Loading...

Tóm tắt nội dung

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 Đề Số 1 A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): Câu I (2 điểm): Cho hàm số y x 3 3mx 2 3(m 2 1) x m3 m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O.

Giải phương trình : log 21 (5 2 x) log 2 (5 2 x).log 2 x 1 (5 2 x) log 2 (2 x 5) 2 log 2 (2 x 1).log 2 (5 2 x) 2 tan( x ) 4 dx Câu III (1 điểm): Tính tích phân I cos2x 0 6 Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SC và mặt phẳng (AMN).

Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P (1 2 x 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : x2 y 2 1 và hai điểm A(3;-2) , 9 4 B(-3;2) .

Xem tra điểm thi tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Đề thi đáp án tốt nghiệp THPT Xem tra đáp án đề thi tốt nghiệp THPT Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S).

Nội dung tài liệu

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 Đề Số 1 A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): Câu I (2 điểm): Cho hàm số y x 3 3mx 2 3(m 2 1) x m3 m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O.

Câu II (2 điểm): 1.

Giải phương trình : 2cos3x.cosx+ 3(1 s in2x)=2 3cos 2 (2 x ) 4 2.

Giải phương trình : log 21 (5 2 x) log 2 (5 2 x).log 2 x 1 (5 2 x) log 2 (2 x 5) 2 log 2 (2 x 1).log 2 (5 2 x) 2 tan( x ) 4 dx Câu III (1 điểm): Tính tích phân I cos2x 0 6 Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SC và mặt phẳng (AMN).

Chứng minh SC vuông góc với AI và tính thể tích khối chóp MBAI.

Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P 3( x 2 y 2 z 2 ) 2 xyz .

B.

PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1.

Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : 3x 4 y 4 0 .

Tìm trên hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15.

2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu (S ) : x2 y 2 z 2 2 x 6 y 4 z 2 0 .

Xem tra điểm thi tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Đề thi đáp án tốt nghiệp THPT Xem tra đáp án đề thi tốt nghiệp THPT Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S).

Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P (1 2 x 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : x2 y 2 1 và hai điểm A(3;-2) , 9 4 B(-3;2) .

Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất.

2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu (S ) : x2 y 2 z 2 2 x 6 y 4 z 2 0 .

Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S)

0 Bình luận



Bạn cần đăng nhập mới có thể viết bình luận

Có thể bạn quan tâm




Nhận thông tin qua email


Cập nhật tài liệu hay và mới tại doc24.vn qua email



Hỗ trợ trực tuyến