Cộng đồng chia sẻ tri thức Doc24.vn

Phương trình quy về phương trình bậc hai

Lý thuyết
Mục lục
* * * * *

Bài 34 (SGK trang 56)

Giải các phương trình trùng phương:

a) x4 - 5x2 + 4 = 0;           b) 2x4 - 3x2 - 2 = 0;          c) 3x4 + 10x2 + 3 = 0. 

Hướng dẫn giải

a) x4 – 5x2+ 4 = 0.

Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4

Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.

b) 2x4 – 3x2 – 2 = 0.

Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)

Vậy: x1 = √2; x2 = -√2

c) 3x4 + 10x2 + 3 = 0.

Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)

Phương trình vô nghiệm.



Bài 35 (SGK trang 56)

Giải các phương trình:

a)   \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right);\)    b)  \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x};\)

c) \(\dfrac{4}{x+1}=\dfrac{-x^2-x+2}{\left(x+1\right)\left(x+2\right)}.\)

Hướng dẫn giải

a) + 2 = x(1 - x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ 4x2 – 3x – 3 = 0; ∆ = 57

x1 = , x2 =

b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.

(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)

⇔ 4 – x23x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0

∆ = 225 + 64 = 289, √∆ = 17

x1 = , x2 = 4

c) = . Điều kiện: x ≠ -1; x ≠ -2

Phương trình tương đương: 4(x + 2) = -x2 – x + 2

⇔ 4x + 8 = 2 – x2 – x

⇔ x2 + 5x + 6 = 0

Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.



Bài 36 (SGK trang 56)

Giải các phương trình:

a) (3x2 - 5x + 1)(x2 - 4) = 0;                      b) (2x2 + x - 4)2 - (2x - 1)2 = 0.

Hướng dẫn giải

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5



Bài 37 (SGK trang 56)

Giải các phương trình trùng phương:

a) \(9x^4-10x^2+1=0;\)                          b)  \(5x^4+2x^2-16=10-x^2;\)

c) \(0,3x^4+1,8x^2+1,5=0;\)                d) \(2x^2+1=\dfrac{1}{x^2}-4.\)

Hướng dẫn giải

a, Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình đã cho trở thành: \(9t^2-10t+1=0\) (1)
Có a+b+c = 9 -10 +1 =0
=> Pt (1) có nghiệm: \(t_1=1;t_2=\dfrac{1}{9}\)( TMĐK của t )
Với \(t_1=1\) ta có \(x^2=1\Leftrightarrow x=\pm1\)
Với \(t_2=\dfrac{1}{9}\) ta có \(x^2=\dfrac{1}{9}\Leftrightarrow x=\pm\dfrac{1}{3}\)
Vậy phương trình đã cho có tập nghiệm S={-1;1;1/3;-1/3}

b, Pt \(\Leftrightarrow5x^4+3x^2-26=0\) (2)
Đặt \(x^2=t\left(t\ge0\right)\)
Pt (2) trở thành: \(5t^2+3t-26=0\)
\(\Leftrightarrow\left(t-2\right)\left(5t+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(TMĐK\right)\\t=-\dfrac{13}{5}\left(KTMĐK\right)\end{matrix}\right.\)
Với t=2 ta có: \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy pt đã cho có nghiệm \(x=\pm\sqrt{2}\)

c, Pt \(\Leftrightarrow3x^4+18x^2+15=0\) (3)
Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt (3) trở thành: \(3t^2+18t+15=0\)
\(\Leftrightarrow t^2+6t+5=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-5\end{matrix}\right.\) ( Không TMĐK)
Vậy pt đã cho vô nghiệm

d, ĐK: \(x\ne0\)
Pt \(\Leftrightarrow\dfrac{2x^3+x^2-1+4x^2}{x^2}=0\)
\(\Rightarrow2x^3+5x^2-1=0\)
\(\Leftrightarrow x^2\left(2x+1\right)+2x\left(2x+1\right)-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2+2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\pm\sqrt{2}\end{matrix}\right.\)( TMĐK )
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{2};-1+\sqrt{2};-1-\sqrt{2}\right\}\)

Bài 38 (SGK trang 56)

Giải các phương trình:

a)   (x - 3)2 + (x + 4)2 = 23 - 3x;             b)   x3 + 2x2 - (x - 3)2 = (x - 1)(x2 - 2);

c)  (x - 1)3 + 0,5x2 = x(x2 + 1,5);            d) \(\dfrac{x\left(x-7\right)}{3}-1=\dfrac{x}{2}=\dfrac{x-4}{3};\)

e)  \(\dfrac{14}{x^2-9}=1-\dfrac{1}{3-x};\)                    f) \(\dfrac{2x}{x+1}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}.\)

Hướng dẫn giải

a) (x – 3)2 + (x + 4)2 = 23 – 3x ⇔ x2 – 6x + 9 + x2 + 8x + 16 = 23 – 3x

⇔ 2x2 + 5x + 2 = 0

∆ = 25 – 16 = 9

x1 = -2, x2 =

b) x3 + 2x2 – (x – 3)2 = (x – 1)(x2 – 2)

⇔ x3 + 2x2 – x2 + 6x – 9 = x3 – x2 – 2x + 2 ⇔ 2x2 + 8x – 11 = 0

∆’ = 16 + 22 = 38

x1 = , x2 =

c) (x – 1)3 + 0,5x2 = x(x2 + 1,5)

⇔ x3 – 3x2 + 3x – 1 + 0,5x2 = x3 + 1,5x

⇔ 2,5x2 – 1,5x + 1 = 0

⇔ 5x2 – 3x + 2 = 0; ∆ = 9 – 40 = -31 < 0

Phương trình vô nghiệm

d) – 1 = -

⇔ 2x(x – 7) – 6 = 3x – 2(x – 4)

⇔ 2x2 – 14x – 6 = 3x – 2x + 8

⇔ 2x2 – 15x – 14 = 0; ∆ = 225 + 112 = 337

x1 = , x2 =

e) = 1 - . Điều kiện: x ≠ ±3

Phương trình được viết lại: = 1 +

⇔ 14 = x2 – 9 + x + 3

⇔ x2 + x – 20 = 0, ∆ = 1 + 4 . 20 = 81

√∆ = 9

Nên x1 = = -5; x2 = = 4 (thỏa mãn)

Vậy phương trình có hai nghiệm x1 = -5, x2 = 4.

f) = . Điều kiện: x ≠ -1, x ≠ 4

Phương trình tương đương với:

2x(x – 4) = x2 – x + 8 ⇔ 2x2 – 8x – x2 + x – 8 = 0

⇔ x2 – 7x – 8 = 0

Có a – b + c = 1 – (-7) – 8 = 0 nên x1 = -1, x2 = 8

Vì x1 = -1 không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là x = 8.



Bài 39 (SGK trang 57)

Giải các phương trình bằng cách đưa về phương trình tích:

a)  \(\left(3x^2-7x-10\right)\left[2x^2+\left(1-\sqrt{5}\right)x+\sqrt{5}-3\right]=0;\)

b) \(x^3+3x^2-2x-6=0;\)

c) \(\left(x^2-1\right)\left(0,6x+1\right)=0,6x^2+x;\)

d) \(\left(x^2+2x-5\right)^2=\left(x^2-x+5\right)^2.\)

Hướng dẫn giải

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



Bài 40 (SGK trang 57)

Giải các phương trình bằng cách đặt ẩn phụ:

a)  \(3\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0;\)

b) \(\left(x^2-4x+2\right)^2+x^2-4x-4=0;\)

c) \(x-\sqrt{x}=5\sqrt{x}+7;\)

d) \(\dfrac{x}{x+1}-10.\dfrac{x+1}{x}=3.\)

Hướng dẫn giải

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =