Cộng đồng chia sẻ tri thức Doc24.vn

Đường tròn nội tiếp. Đường tròn ngoại tiếp

Lý thuyết
Mục lục
* * * * *

Bài 63 (SGK trang 92)

Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.

Hướng dẫn giải

Hình a.

Gọi ai là cạnh của đa giác đều i cạnh.

a) a6= R (vì OA1A2 là tam giác đều)

Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung , ,..., mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn

b) Hình b

Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2

Cách vẽ như ở bài tập 61.

c) Hình c

A1H = R + =

A3H =

A1A3 = a

Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.

Từ đó = a2 - .

=> a2 = 3R2 => a = R√3

Cách vẽ như câu a) hình a.

Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c



Bài 64 (SGK trang 92)

Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho số đo cung AB = 60o; số đo cung BC = 90o và số đo cung CD = 120o.

a) Tứ giác ABCD là hình gì?

b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.

c) Tính độ dài các cạnh của tứ giác ABCD theo R.

Hướng dẫn giải

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bài 61 (SGK trang 91)

a) Vẽ đường tròn tâm O, bán kính 2cm.

b) Vẽ hình vuông nội tiếp đường tròn (O) ở câu a.

c) Tính bán kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).

Hướng dẫn giải

a) Chọn điểm O làm tâm , mở compa có độ dài 2cm vẽ đường tròn tâm O, bán kính 2cm: (O; 2cm)

Vẽ bằng eke và thước thẳng.

b) Vẽ đường kính AC và BD vuông góc với nhau. Nối A với B, B với C, C với D, D với A ta được tứ giác ABCD là hình vuông nội tiếp đường tròn (O;2cm)

c) Vẽ OH ⊥ AD

OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.

r = OH = AH.

r2 + r2 = OA2 = 22 => 2r2 = 4 => r = √2 (cm)

Vẽ đường tròn (O;√2cm). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh



Bài 62 (SGK trang 91)

a) Vẽ tam giác đều ABC cạnh a = 3 cm.

b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.

c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.

d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O ; R).

Hướng dẫn giải

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).