Cộng đồng chia sẻ tri thức Doc24.vn

Hình thoi

Lý thuyết
Mục lục
* * * * *

Bài 73 (Sgk tập 1 - trang 105)

Tìm các hình thoi trên hình 102 

 

Hướng dẫn giải

73. Tìm các hình thoi trên hình 102.

Bài giải:

Các tứ giác ở hình 39 a, b, c, e là hình thoi.

- Ở hình 102a, ABCD là hình thoi (theo định nghĩa)

- Ở hình 102b, EFGH là hình thoi (theo dấu hiệu nhận biết 4)

- Ở hình 102c, KINM là hình thoi (theo dấu hiệu nhận biết 3)

-Ở hình 102e, ADBC là hình thoi (theo định nghĩa, vì AC = AD = AB = BD = BC)

Tứ giác trên hình 102d không là hình thoi.

Bài 74 (Sgk tập 1 - trang 106)

Hai đường chéo của một hình thoi bằng 8cm và 10cm. Cạnh của hình thoi bằng giá trị nào trong các giá trị sau :

(A) \(6cm\)                 (B) \(\sqrt{41}cm\)                    (C) \(\sqrt{164}cm\)                      (D) \(9cm\)

Hướng dẫn giải

Xét bài toán tổng quát:

ABCD là hình thoi, O là giao điểm hai đường chéo.

Theo định lí Pitago ta có:

AB2 = OA2 +OB2 = (AC)2 + (BD)2

Suy ra AB =

Do đó theo đề bài: AB =

AB =

Vậy (B) đúng.

Bài 75 (Sgk tập 1 - trang 106)

Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi ?

Hướng dẫn giải

Bài giải:

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

( = 1212AB = 1212CD)

HA = FB = DH = CF

( = 1212AD = 1212BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

Bài 76 (Sgk tập 1 - trang 106)

Chứng minh rằng các trung điểm của bốn cạnh một hình thoi là các đỉnh của một hình chữ nhật ?

Hướng dẫn giải

Bài giải:

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG (1)

Chứng minh tương tự EH // FC (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.


Bài 77 (Sgk tập 1 - trang 106)

Chứng minh rằng :

a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi

b) Hai đường chéo của hình thoi là hai trục đối xứng của hình thoi 

Hướng dẫn giải

a) Hình bình hành nhận giao điểm hai đường chéo là tâm đối xứng. Hình thoi cũng là một hình bình hành nên giao điểm hai đường chéo hình thoi là tâm đối xứng của hình.

b) BD là đường trung trực của AC (do BA = BC, DA = DC) nên A đối xứng với C qua BD.

B và D cũng đối xứng với chính nó qua BD.

Do đó BD là trục đối xứng với chính nó qua BD.

Do đó BD là trục đối xứng của hình thoi.

Tương tự AC cũng là trục đối xứng của hình thoi.


Bài 78 (Sgk tập 1 - trang 106)

Đố :

Hình 103 biểu diễn một phần của cửa xếp, gồm những thanh kim loại dài bằng nhau và được liên kết với nhau bởi các chốt tại hai đầu và tại trung điểm. Vì sao tại mỗi vị trí của cửa xếp, các tứ giác trên hình vẽ đều là hình thoi, các điểm chốt I, K, M, N, O nằm trên một đường thẳng ?

 

Hướng dẫn giải

78. Đố. Hình 103 biểu diễn một phần của cửa xếp, gồm những thanh kim loại dài bàng nhau và được liên kết với nhau bởi các chốt tại hai đầu và tại trung điểm. Vì sao tại mỗi vị trí của cửa xếp, các tứ giác trên hình vẽ đều là hình thoi, các điểm chốt I, K, M, N, O nằm trên một đường thẳng ?

Bài giải:

Các tứ giác IEKF, KGMH là hình thoi nên KI là phân giác góc EKF, KM là phân giác của góc GKH.

ˆEKFEKF^ = ˆHKGHKG^

Nên ˆK1K1^ = ˆK2K2^ = ˆK4K4^ = ˆK5K5^

Do đó ˆK2K2^ +ˆK3K3^ + ˆK4K4^ = ˆK2K2^ + ˆK3K3^ + ˆK1K1^=1800

Suy ra I, K, M thẳng hàng.

Chứng minh tương tự, các điểm I, K, M, N, O cùng nằm trên một đường thẳng.