Cộng đồng chia sẻ tri thức Doc24.vn

Đường thẳng song song với một đường thẳng cho trước

Lý thuyết
Mục lục
* * * * *

Bài 69 (Sgk tập 1 - trang 103)

Ghép mỗi ý (1), (2), (3) với một trong các ý (5), (6), (7), (8) để được một khẳng định đúng :

 

Hướng dẫn giải

Bài giải:

Ghép các ý: (1) với (7)

(2) với (5)

(3) với (8)

(4) với (6)


Luyện tập - Bài 70 (Sgk tập 1 - trang 103)

Cho góc vuông xOy, điểm A thuộc tia Oy sao cho OA = 2cm. Lấy B là một điểm bất kì thuộc tia Ox. Gọi C là trung điểm của AB. Khi điểm B di chuyển trên tia Ox thì điểm C di chuyển trên đường nào ?

Hướng dẫn giải

Cách 1:

Kẻ CH ⊥ Ox

Ta có CB = CA (gt)

CH // AO (cùng vuông góc Ox)

Suy ra CH = 1212AO = 1212.2 = 1 (cm)

Điểm c cách tia Ox cố định một khoảng không đổi 1cm nên C di chuyển trên tia Em song song với Ox và cách Ox một khoảng bằng 1cm.

Cách 2:

Vì C là trung điểm của AB nên OC là trung tuyến ứng với cạnh huyền AB

do đó CO = CA

Điểm C di chuyển trên tia Em thuộc đường trung trực của OA

Bài 68 (Sgk tập 1 - trang 102)

Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. Lấy điểm B bất kì thuộc đường thẳng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ?

Hướng dẫn giải

Bài giải:

Kẻ AH và CK vuông góc với d.

Ta có AB = CB (gt)

ˆABHABH^ = ˆCBKCBK^ ( đối đỉnh)

nên ∆AHB = ∆CKB (cạnh huyền - góc nhọn)

Suy ra CK = AH = 2cm

Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.

Luyện tập - Bài 71 (Sgk tập 1 - trang 103)

Cho tam giác ABC vuông tại A. Lấy M là một điểm bất  kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE

a) Chứng minh rằng ba điểm A, O, M thẳng hàng

b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?

c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?

Hướng dẫn giải

Bài giải:

a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900

nên ADME là hình chữ nhật

O là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng

b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:

Cách 1:

Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).

Suy ra OK=12AHOK=12AH

Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.

Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.

Bài 67 (Sgk tập 1 - trang 102)

Cho đoạn thẳng AB. Kẻ tia Ax bất kì. Trên tia Ax lấy các điểm C, D, E sao cho AC = CD = DE (h.97). Kẻ đoạn thẳng EB. Qua C, D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra thành 3 phần bằng nhau ?

Hướng dẫn giải

Bài giải:

Ta có: EB // DD' // CC' và AE = CD = DE.

Nên theo định lí về các đường thẳng song song cách đều ta suy ra

AC' = C'D' = D'B

Vậy đoạn thẳng AB bị chia ra ba phần bằng nhau.

Luyện tập - Bài 72 (Sgk tập 1 - trang 103)

Đố :

Để vạch một đường thẳng song song với mép gỗ AB và cách mép gỗ 10 cm, bác thợ mộc đặt đoạn bút chì CD dài 10 cm vuông góc với ngón tay trỏ lấy làm cữ (h.98), rồi đưa ngón trỏ chạy dọc theo mép gỗ AB. Căn cứ vào kiến thức nào mà ta kết luận được rằng đầu chì C vạch nên đường thẳng song song với AB và cách AB là 10 cm ?

Hướng dẫn giải

Bài giải:

Căn cứ vào tính chất đưởng thẳng song song với một đường thẳng cho trước ta kết luận là vì điểm C cách mép gỗ AB một khoảng bằng 10cm nên đầu chì C vạch nên đường thằng song song với AB và cách AB một khoảng 10cm.