Cộng đồng chia sẻ tri thức Doc24.vn

Tính chất ba đường phân giác của tam giác

Lý thuyết
Mục lục
* * * * *

Bài 36 (SGK - tập 2 trang 72)

Cho tam giác DEF, điểm I nằm trong tam giác và cách đều ba cạnh của nó. Chứng minh I là điểm chung của ba đường phân giác của tam giác DEF ?

Hướng dẫn giải

Hướng dẫn:

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ˆDD^, ˆEE^, ˆFF^

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

Bài 37 (SGK - tập 2 trang 72)

Nêu cách vẽ điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau. Vẽ hình minh họa ?

Hướng dẫn giải

Hướng dẫn:

Vẽ điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau tức là K là giao điểm của các đường phân giác trong tam giác MNP

Vì vậy ta chỉ cần vẽ phân giác của hai trong ba góc của ∆MNP

Bài 38 (SGK - tập 2 trang 73)

Cho hình 38.

a) Tính góc KOL

b) Kẻ tia IO, hãy tính góc KIO

c) Điểm O có cách đều ba cạnh của tam giác IKL không ? Tại sao ?

Hướng dẫn giải

Hướng dẫn:

a) ∆KIL có ˆII^ = 620

nên ˆIKL+ˆILKIKL^+ILK^ = 1180

Vì KO và LO là phân giác ˆIKLIKL^, ˆILKILK^

nên ˆOKL+ˆOLKOKL^+OLK^= 1212(ˆIKL+ˆILKIKL^+ILK^)

=> ˆOKL+ˆOLKOKL^+OLK^ = 1212 1180

ˆOKL+ˆOLKOKL^+OLK^ = 590

∆KOL có ˆOKL+ˆOLKOKL^+OLK^ = 590

nên ˆKOLKOL^ = 1800 – 590 = 1210

c) Vì O là giao điểm của hai đường phân giác của ˆKK^ˆLL^ nên O cách đều ba cạnh của tam giác IKL

Luyện tập - Bài 39 (SGK - tập 2 trang 73)

Cho hình 39 :

a) Chứng minh \(\Delta ABD=\Delta ACD\)

b) So sánh góc DBC và góc DCB 

Hướng dẫn giải

a) Căn cứ các kí hiệu đã cho trên hình của bài 39 ta có: ∆ABD và ∆ACD có:

AB = AC

BAD^=CAD^

AD là cạnh chung

=> ∆ABD = ∆ACD

b) Vì ∆ABD = ∆ACD

=> BD = CD => ∆BCD cân tại D

=>

Luyện tập - Bài 40 (SGK - tập 2 trang 73)

Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh điểm A, G, I thẳng hàng ?

Hướng dẫn giải

Hướng dẫn:

a) Căn cứ các kí hiệu đã cho trên hình của bài 39 ta có: ∆ABD và ∆ACD có:

AB = AC

ˆBAD=ˆCADBAD^=CAD^

AD là cạnh chung

=> ∆ABD = ∆ACD

b) Vì ∆ABD = ∆ACD

=> BD = CD => ∆BCD cân tại D

=> ˆDBC=ˆDCB

Luyện tập - Bài 41 (SGK - tập 2 trang 73)

Hỏi trọng tâm của một tam giác đều có cách đều 3 cạnh của nó hay không ? Vì  sao ?

Hướng dẫn giải

A B C G H I O

GT tam giác ABC đều

G là trọng tâm tam giác

KL G cách đề ba cạnh tam giác

Trọng tâm của tam giác đều cách đều ba cạnh của nó :

Giả sử ∆ABC đều có trọng tâm G

=> GA = 2323AN; GB = 2323BM; GC = 2323EC

Vì ∆ABC đều nên ba trung tuyến AN, BM, CE bằng nhau

=> GA = GB = GC

Do đó: ∆AMG = ∆CMG (c.c.c)

=> ˆAMG=ˆCMGAMG^=CMG^

ˆAMG=ˆCMGAMG^=CMG^ = 1800

=> ˆAMGAMG^ = 900

=> GM ⊥ AC tức là GM khoảng cách từ G đến AC

Chứng minh tương tự GE, GN là khoảng cách từ G đến AB, AC

Mà GM =1313BM; GN = 1313AN; EG = 1313EC

Và AN = BM = EC nên GM = GN = GE

Hay G cách đều ba cạnh của tam giác ABC



Luyện tập - Bài 42 (SGK - tập 2 trang 73)

Chứng minh định lí :

Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân 

Gợi ý : Trong tam giác ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn \(DA_1\) sao cho \(DA_1=AD\)

Hướng dẫn giải

cho em giải khác nhé

A B C D H G

D thuộc phân giác góc A suy ra DH = DG ( tính chất tia phân giác của một góc )

xét hai tam giác vuông BHD và CGD có

DH = DG ( cmt)

DB = DC ( gt)

do đó tam giác BHD = tam giác CGD ( cạnh huyền - góc nhọn )

suy ra góc B = góc C ( 2 góc tương ứng )

tam giác ABC có góc B = góc C suy ra tam giác ABC cân tại A

Luyện tập - Bài 43 (SGK - tập 2 trang 73)

Đố :

Có hai con đường cắt nhau và cùng cắt một con sông tại hai điểm khác nhau (h.40)

Hãy tìm một địa điểm để xây dựng một đài quan sát sao cho các khoảng cách từ đó đến hai con đường và đến bờ sông bằng nhau ?

Có tất cả mấy địa điểm như vậy ?

Hướng dẫn giải

Hướng dẫn:

Hai con đường cắt nhau và cùng cắt một con song tạo thành tam giác ABC. Địa điểm để xây dựng trạm kiểm lâm thỏa mãn đề bài phải là giao điểm I của ba đường phân giác trong của tam giác ABC và giao điểm K của tia phân giác của góc A và hai tia phân giác của các góc ngoài ở đỉnh D và đỉnh E của tam giác ADE.

Vậy các địa điểm và các khoảng cách này ngắn nhất để xây dựng trạm kiểm lâm là I, K