Cộng đồng chia sẻ tri thức Doc24.vn

Tính chất ba đường cao của tam giác

Lý thuyết
Mục lục
* * * * *

Bài 61 (SGK - tập 2 trang 83)

Cho tam giác ABC không vuông. Gọi H là trực tâm của nó 

a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó

b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác HAB và HAC

Hướng dẫn giải

Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, AC, AB tại N, M, E

a) ∆HBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ∆HBC

b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B

Bài 60 (SGK - tập 2 trang 83)

Trên đường thẳng d, lấy 3 điểm phân biệt I, J, K (J ở giữa I và K)

Kẻ đường thẳng l vuông góc với d tại J. Trên l lấy điểm M khác điểm J. Đường thẳng qua I vuông góc với MK cắt l tại N

Chứng minh \(KM\perp IM\) ?

Hướng dẫn giải

Giải tương tự như bài tập 59

∆MKI có JM là đường cao (l ⊥ d), đường thẳng KN cũng là đường cao ( giả thiết KN ⊥ MI). Hai đường cao cắt nhau tại N nên N là trực tâm ∆MKI. Vậy NI ⊥ MK

Bài 59 (SGK - tập 2 trang 83)

Cho hình 57 :

a) Chứng minh \(NS\perp LM\)

b) Khi \(\widehat{LNP}=50^0\), hãy tính góc MSP và góc PSQ 

 

Hướng dẫn giải

a) Từ hình vẽ ta có: LP ⊥ MN; MQ ⊥ LN

ΔMNL có S là giao điểm của hai đường cao LP và MQ nên S chính là trực tâm của tam giác (định lí ba đường cao).

=> NS cũng là đường cao trong tam giác hay NS ⊥ LM (đpcm).

b) ΔNMQ vuông tại Q có góc LNP = 50o nên góc QMN = 40o

ΔMPS vuông tại P có góc QMP = 40o nên góc MSP = 50o

Vì hai góc MSP và PSQ là hai góc kề bù nên suy ra:

góc PSQ = 180o - 50o = 130o.

Bài 58 (SGK - tập 2 trang 83)

Hãy giải thích vì sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ở bên ngoài tam giác ?

Hướng dẫn giải

Trực tâm của tam giác vuông trùng với đỉnh góc vuông là vì mỗi cạnh góc vuông của tam giác chính là đường cao cua tam giác nên 2 cạnh góc vuông và đường cao ứng với cạnh huyền trong tam giác vuông cắt nhau tại đỉnh góc vuông.

+ Nếu tam giác ABC có góc A tù => BC là cạnh lớn nhất

=> BC > BA

Kẻ đường cao BL thì LA; LC là hai hình chiếu của BA, BC => LA < LC

=> A nằm giữa L và C tức đường cao BL nằm ngoài tam giác ABC

Tương tự đường cao CK nằm ngoài tam giác ABC

Nên điểm cắt nhau của ba đường cao nằm ngoài tam giác

Bài 62 (SGK - tập 2 trang 83)

Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.

Hướng dẫn giải

Hướng dẫn:

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> \(\widehat{FBC}=\widehat{ECB}\)

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.

 

Loading...