Cộng đồng chia sẻ tri thức Doc24.vn

Bài 2: Khối đa diện lồi và khối đa diện đều

Lý thuyết
Mục lục
* * * * *

Bài 1 (SGK trang 18)

Cắt bìa theo mẫu dưới đây (h.1.23), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập hương và hình bát diện đều ?

Hướng dẫn giải

Làm thủ công

Bài 2 (SGK trang 18)

Cho hình lập phương (H). Gọi (H') là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H') ?

Hướng dẫn giải

Cho hình lập phương ABCD.A’B’C’D’ . Gọi E, F, G, I, J, K là tâm của các mặt của nó. Khi đó các đỉnh E, F, G, I, J, K tạo thành hình bát diện đều EFGIJK.

Đặt AB = a, thì

Diện tích tam giác đều (EFJ) bằng .

Suy ra diện tích toàn phần của hình bát diện (H’) bằng . Diện tích toàn phần của hình lập phương (H) bằng . Do đó tỉ số diện tích toàn phần của (H) và (H') bằng

.

Bài 3 (SGK trang 18)

Chứng minh rằng tâm của các mặt của các hình tứ diện đều là các đỉnh của một hình tứ diện đều ?

Hướng dẫn giải

Cho hình tứ diện đều ABCD, cạnh bằng a. Gọi E, F, I, J lần lượt là tâm của các mặt ABC, ABD, ACD, BCD (H.11).

, nên \(\dfrac{EF}{CD}=\dfrac{1}{3}\)

Suy ra .

Tương tự, các cạnh khác của tứ diện EFIJ đều bằng .

Do đó tứ diện EFIJ là một tứ diện đều.



Bài 4 (SGK trang 18)

Cho hình bát diện đều ABCDEF (h.1.24)

Chứng minh rằng :

a) Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

b) ABFD, AEFC và BCDE là những hình vuông 

Hướng dẫn giải

a) Do B, C, D, E cách đều A và F nên chúng đồng phẳng (cùng thuộc mặt phẳng trung trực của AF).

Tương tự, A, B, F, D đồng phẳng và A, C, F, E đồng phẳng

Gọi I là giao của (AF) với (BCDE). Khi đó B, I, D là những điểm chung của hai mặt phẳng (BCDE) và (ABFD) nên chúng thẳng hàng. Tương tự, E, I , C thẳng hàng.

Vậy AF, BD, CE đồng quy tại I.

Vì BCDE là hình thoi nên BD vuông góc với BC và cắt BC tại I là trung điểm của mỗi đường. I là trung điểm của AF và AF vuông góc với BD và EC, do đó các đoạn thẳng AF, BD, và CE đôi một vuông góc với nhau cắt nhau tại trung điểm của chúng.

b) Do AI vuông góc (BCDE) và AB = AC =AD = AE nên IB = IC= ID = IE. Từ đó suy ra hình thoi BCDE là hình vuông. Tương tự, ABFD, AEFC là những hình vuông