Cộng đồng chia sẻ tri thức Doc24.vn

§3. Phương trình và hệ phương trình bậc nhất nhiều ẩn

Lý thuyết
Mục lục
* * * * *

Bài 1 (SGK trang 68)

Cho hệ phương trình :

                      \(\left\{{}\begin{matrix}7x-5y=9\\14x-10y=10\end{matrix}\right.\)

Tạo sao không giải ta cũng kết luận được hệ phương trình vô nghiệm ?

Hướng dẫn giải

Làm theo cách lớp 8 :

Theo đề bài ta có hệ phương trình : \(\left\{{}\begin{matrix}7x-5y=9\left(1\right)\\14x-10y=10\left(2\right)\end{matrix}\right.\)

Ta thấy, lấy vế trái của phương trình (1) nhân với 2 ta được : \(\left(7x-5y\right)\cdot2=14x-10y\) => trùng với vế trái của phương trình (2).

Tiếp tục ta lấy vế phải của phương trình (1) nhân với 2 ta được \(9\cdot2=18\ne\) với kết quả của vế trái phương trình (2) = 10.

Vậy ta kết luận hệ phương trình vô nghiệm.

Bài 2 (SGK trang 68)

Giải các hệ phương trình :

a. \(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\)

c. \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\)

Hướng dẫn giải

a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :

\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)

c) Cách làm tương tự như pt a ta có :

\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)

d) Tương tự ta có :

\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bài 4 (SGK trang 68)

Có hai dây chuyền may áo sơ mi. Ngày thứ nhất cả hai dây chuyền may được 930 áo. Ngày thứ hai do dây chuyền thứ nhất tăng năng suất 18%, dây chuyền thứ hai tăng năng suất 15% nên cả hai dây chuyền may được 1083 áo. Hỏi trong ngày thứ nhất mỗi dây chuyền may được bao nhiêu áo sơ mi ?

Hướng dẫn giải

Gọi số áo dây chuyển 1 làm được trong ngày 1 là x.

Gọi số áo dây chuyền 2 làm được trong ngày 1 là y.

Theo đề bài ta có :

\(\left\{{}\begin{matrix}x+y=930\\118\%\cdot x+115\%\cdot y=1083\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=450\\y=480\end{matrix}\right.\)

Vậy ngày thứ nhất dây chuyền 1 may được 450 áo, dây chuyền 2 may được 480 áo.

Bài 5 (SGK trang 68)

Giải các hệ phương trình :

a. \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)

Hướng dẫn giải

a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

Bài 6 (SGK trang 68)

Một cửa hàng bán áo sơ mi, quần âu nam và váy nữ. Ngày thứ nhất bán được 12 áo, 21 quần và 18 váy, doanh thu 5 349 000 đồng. Ngày thứ 2 bán được 16 áo, 24 quần và 12 váy, doanh thu 5 600 000 đồng. Ngày thứ 3 bán được 24 áo, 15 quần và 12 váy, doanh thu 5 259 000 đồng. Hỏi giá bán mỗi áo, mỗi quần và mỗi váy là bao nhiêu ?

Hướng dẫn giải

Như hpt lớp 8.

Gọi giá bán áo là x , giá bán quần là y, giá bán váy là z.

Theo đề bài ta có :

\(\left\{{}\begin{matrix}12x+21y+18z=5349000\\16x+24y+12z=5600000\\24x+15y+12z=5259000\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=98000\\y=125000\\z=86000\end{matrix}\right.\)

Vậy giá bán áo là 98000 đồng, giá bán quần là 125000 đồng, giá bán váy là 86000 đồng.

Bài 7 (SGK trang 68 - 69)

Giải các hệ phương trình sau bằng máy tính bỏ túi (làm tròn kết quả dến chữ số thập phân thứ hai)

a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}-2x+3y=5\\5x+2y=4\end{matrix}\right.\)

c. \(\left\{{}\begin{matrix}2x-3y+4z=-5\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}-x+2y-3z=2\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)

Hướng dẫn giải

a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)

\(x=\dfrac{2}{41}\) ; \(y=\dfrac{-48}{41}\)

b. \(\left\{{}\begin{matrix}\text{−2x+3y=5}\\5x+2y=4\end{matrix}\right.\)

\(x=\dfrac{2}{19};y=\dfrac{33}{19}\)

c.\(\left\{{}\begin{matrix}\text{2x−3y+4z=−5}\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)

\(x=\dfrac{22}{101};y=\dfrac{131}{101};z=\dfrac{-39}{101}\)

d. \(\left\{{}\begin{matrix}\text{− x + 2 y − 3 z = 2}\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)

\(x=-4;y=\dfrac{11}{7};z=\dfrac{12}{7}\)

Bài 12 (SBT trang 75)

Giải các hệ phương trình :

a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}7x+14y=17\\2x+4y=5\end{matrix}\right.\)

c) \(\left\{{}\begin{matrix}\dfrac{2}{5}x+\dfrac{3}{7}y=\dfrac{1}{3}\\\dfrac{5}{3}x-\dfrac{5}{7}y=\dfrac{2}{3}\end{matrix}\right.\)

d) \(\left\{{}\begin{matrix}-0,2x+0,5y=1,7\\0,3x+0,4y=0,9\end{matrix}\right.\)

Hướng dẫn giải

a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x-2y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5.\left(3+2y\right)+3y=-7\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13y=-22\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=3+2.\dfrac{-22}{13}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\).



Bài 13 (SBT trang 76)

Một công ty có 85 xe chở khách gồm hai loại xe chở được 4 khách và xe chở được 7 khách. Dùng tất cả số xe đó, tối đa công ty trở một lần được 445 khách. Hỏi công ty đó có mấy xe mỗi loại ?

Hướng dẫn giải

Gọi số xe chở được 4 khách là: \(x\left(x\in N,x>0\right)\)
số xe chở được 7 khách là: \(y\left(y\in N,y>0\right)\).
Do tổng số xe là 85 xe nên: \(x+y=85\).
Dùng tất cả số xe đó, tối đa công ty chở được 445 khách nên: \(4x+7y=445\)
Theo bài ra ta có phương trình:
\(\left\{{}\begin{matrix}x+y=85\\4x+7y=445\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=50\left(tm\right)\\y=35\left(tm\right)\end{matrix}\right.\)
Vậy số xe chở được 4 khách là: 50 xe, số xe chở được 7 khách là 35 xe.

Bài 14 (SBT trang 76)

Giải các hệ phương trình :

a) \(\left\{{}\begin{matrix}x-2y+z=\\2x-y+3z=18\\-3x+3y+2z=-9\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x+y+z=7\\3x-2y+2z=5\\4x-y+3z=10\end{matrix}\right.\)

Hướng dẫn giải

b) Đặt \(\left\{{}\begin{matrix}x+y+z=7\left(1\right)\\3x-2y+2z=5\left(2\right)\\4x-y+3z=10\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)+\left(2\right)\) ta có: \(4x-y+3z=12\). (4)
Từ (3) và (4): \(\left\{{}\begin{matrix}4x-y+3z=12\\4x-y+3z=10\end{matrix}\right.\) (vô nghiệm).
Vậy hệ phương trình vô nghiệm.

Bài 15 (SBT trang 76)

Giải các hệ phương trình sau đây bằng máy tính bỏ túi 

a) \(\left\{{}\begin{matrix}\dfrac{3}{4}x-\dfrac{7}{3}y=\dfrac{4}{5}\\\dfrac{2}{5}x+\dfrac{2}{7}y=\dfrac{2}{9}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}3,7x+4,3y=-2,5\\-5,1x+2,7y=4,8\end{matrix}\right.\)

Hướng dẫn giải

Bài 16 (SBT trang 76)

Giải các hệ phương trình sau bằng máy tính bỏ túi :

a) \(\left\{{}\begin{matrix}3x_1+4x_2-5x_3=12\\-4x_1+2x_2+7x_3=7\\5x_1+6x_2-4x_3=12\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}0,3x-4,7y+2,3z=4,9\\-2,1x+3,2y+4,5z=7,6\\4,2x-2,7y+3,7z=5,7\end{matrix}\right.\)

Hướng dẫn giải

a, (\(x_1,x_2,x_3\))\(\approx\)(-2,52;3,2;-1,35)

b, (x,y,z)\(\approx\)(-0,29;-0,22;1,71)

Bài 17 (SBT trang 76)

Một chủ cửa hàng bán lẻ mang 1 500 000 đồng đến ngân hàng đổi tiền xu để trả lại cho người mua. Ông ta đổi được tất cả 1 450 đồng tiền xu các loại 2000 đồng, 1000 đồng và 500 đồng. Biết rằng số tiền xu loại 1 000 đồng bằng hai lần hiệu của số tiền xu loại 500 đồng với số tiền xu loại 2000 đồng. Hỏi mỗi loại có bao nhiêu đồng tiền xu ?

Hướng dẫn giải

Gọi x,y,z là số đồng tiền các loại mệnh giá 2000 đồng, 1000 đồng và 500 đồng. (\(\left(x,y,z\in N^{\circledast}\right)\).
Theo giả thiết ta có: \(x+y+z=1450\) (đồng).
Do tổng số tiền cần đổi là 1 500 000 đồng nên:
\(2000x+1000y+500z=1500000\)
Do số tiền xu loại 1 000 đồng bằng hai lần hiệu của số tiền xu loại 500 đồng với số tiền xu loại 2000 đồng nên:\(y=2\left(z-x\right)\)
Vậy ta có hệ:
\(\left\{{}\begin{matrix}x+y+z=1450\\2000x+1000y+500z=1500000\\y=2\left(z-x\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=350\\y=500\\z=600\end{matrix}\right.\)
vậy số tiền loại 2000 đồng là 350 tờ; số tiền loại 1000 đồng là 500 tờ; số tiền loại 600 đồng là 600 tờ.

Bài 18 (SBT trang 76)

Tìm giá trị của m để các hệ phương trình sau vô nghiệm ?

a) \(\left\{{}\begin{matrix}3x+2y=9\\mx-2y=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}2x-my=5\\x+y=7\end{matrix}\right.\)

Hướng dẫn giải

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.