Cộng đồng chia sẻ tri thức Doc24.vn

§2. Tích vô hướng của hai vectơ

Lý thuyết
Mục lục
* * * * *

Bài 1 (SGK trang 45)

Cho tam giác vuông cân ABC có AB = AC = a. Tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC,}\overrightarrow{AC}.\overrightarrow{CB}\) ?

Hướng dẫn giải

Ta có: CB= a√2; = 450

Vậy = -. = -||: ||. cos450 = -a.a√2.

=> = -a2

Bài 2 (SGK trang 45)

Cho 3 điểm O, A, B thẳng hàng và biết OA = a; OB = b. Tính tích vô hướng \(\overrightarrow{OA}.\overrightarrow{OB}\) trong hai trường hợp :

a) Điểm O nằm ngoài đoạn AB

b) Điểm O nằm trong đoạn AB

Hướng dẫn giải

a) Khi O nằm ngoài đoạn AB thì hai vec tơ cùng hướng và góc

(, ) = 0

cos(, ) = 1 nên . = a.b

b) Khi O nằm ngoài trongđoạn AB thì hai vectơ ngược hướng và góc

(, ) = 1800

cos(, ) = -1 nên . = -a.b

Bài 3 (SGK trang 45)

Cho nửa đường tròn tâm O có đường kính \(AB=2R\). Gọi M và N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I

a) Chứng minh \(\overrightarrow{AI}.\overrightarrow{AM}=\overrightarrow{AI}.\overrightarrow{AB}\) và \(\overrightarrow{BI}.\overrightarrow{BN}=\overrightarrow{BI}.\overrightarrow{BA}\)

b) Hãy dùng kết quả câu a) để tính \(\overrightarrow{AI}.\overrightarrow{AM}+\overrightarrow{BI}.\overrightarrow{BN}\) theo R

Hướng dẫn giải

a) Nối BM

Ta có AM= AB.cosMAB

=> || = ||.cos(, )

Ta có: . = ||.|| ( vì hai vectơ , cùng phương)

=> . = ||.||.cosAMB.

nhưng ||.||.cos(, ) = .

Vậy . = .

Với . = . lý luận tương tự.
A B M N I

b) . = .

. = .

=> . + . = ( + )

=> . + . = 4R2

 

Bài 4 (SGK trang 45)

Trên mặt phẳng Oxy, cho hai điểm \(A\left(1;3\right);B\left(4;2\right)\)

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA = DB

b) Chứng tỏ OA vuông góc với AB và từ đó tính diện tích tam giác OAB

Hướng dẫn giải

Giải:

a) D nằm trên trục \(Ox\) nên tọa độ của D là \((x; 0).\)

Ta có :

\(DA^2 = (1 - x)^2+ 3^2\)

\(DB^2 = (4 - x)^2+ 2^2\)

\(DA = DB \)

\(\Rightarrow DA^2 = DB^2\)

\(\Leftrightarrow(1-x)^2+9=(4-x)^2+4\)

\(\Leftrightarrow6x = 10\)

\(\Rightarrow x=\dfrac{5}{3}\)

\(\Rightarrow D\)\(\left(\dfrac{5}{3};0\right)\)

b) Ta có:

\(\overrightarrow{OA}= (1; 3)\)

\(\overrightarrow{AP}=\left(3;-1\right)\)

\(1.3 + 3.(-1) = 0 \)

\(\Rightarrow\overrightarrow{OA}=\overrightarrow{OB}=0\)

\(\Rightarrow\overrightarrow{OA}\perp\overrightarrow{AB}\)

SOAB = || .|| => SOAB =5 (dvdt)

Bài 5 (SGK trang 46)

Trên mặt phẳng Oxy hãy tính góc giữa hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) trong các trường hợp sau :

a) \(\overrightarrow{a}=\left(2;3\right);\overrightarrow{b}=\left(6;4\right)\)

b) \(\overrightarrow{a}=\left(3;2\right);\overrightarrow{b}=\left(5;-1\right)\)

c) \(\overrightarrow{a}=\left(-2;-2\sqrt{3}\right);\overrightarrow{b}=\left(3;\sqrt{3}\right)\)

Hướng dẫn giải

a) cos(; ) = = 0

=> (; ) = 900

b) cos(; ) = =

=> (; ) = 450

c) cos(; ) = =

=> (; ) = 1500

Đăng những câu khác đi em mỏi tay rồi

Bài 6 (SGK trang 46)

Trên mặt phẳng tọa độ Oxy cho 4 điểm \(A\left(7;-3\right);B\left(8;4\right);C\left(1;5\right);D\left(0;-2\right)\). Chứng minh rằng tứ giác ABCD là hình vuông ?

Hướng dẫn giải

Ta có: = (1; 7); = (1; 7)

= => ABCD là hình bình hành (1)

ta lại có : AB2 = 50 => AB = 5 √2

AD2 = 50 => AD = 5 √2

AB = AD, kết hợp với (1) => ABCD là hình thoi (2)

Mặt khác = (1; 7); = (-7; 1)

1.7 + (-7).1 = 0 => (3)


Kết hợp (2) và (3) suy ra ABCD là hình vuông

Bài 7 (SGK trang 46)

Trên mặt phẳng Oxy cho điểm \(A\left(-2;1\right)\). Gọi B là điểm đối xứng với điểm A qua gốc tọa độ O. Tìm tọa độ của điểm C có tung độ bằng 2 sao cho tam giác ABC vuông ở C ?

Hướng dẫn giải

Điểm B đối xứng với A qua gốc tọa độ nên tọa độ của B là (2; -1)

Tọa độ của C là (x; 2). Ta có: = (-2 - x; -1)

= (-2 - x; -3)

Tam giác ABC vuông tại C => => . = 0

=> (-2 - x)(2 - x) + (-1)(-3) = 0

=> -4 + x2+ 3 = 0

=> x2 = 1 => x= 1 hoặc x= -1

Ta được hai điểm C1(1; 2); C2(-1; 2)

Bài 2.13 (SBT trang 91)

Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) đều khác vectơ \(\overrightarrow{0}\). Tích vô hướng \(\overrightarrow{a}.\overrightarrow{b}\) khi nào dương, khi nào âm và khi nào bằng 0 ?

Hướng dẫn giải

\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\).
Vì vậy:
\(\overrightarrow{a}.\overrightarrow{b}< 0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)< 0\) hay \(90^o< \left(\overrightarrow{a},\overrightarrow{b}\right)\le180^o\).
\(\overrightarrow{a}.\overrightarrow{b}>0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)>0\) hay \(0^o\le\left(\overrightarrow{a},\overrightarrow{b}\right)< 90^o\).
\(\overrightarrow{a}.\overrightarrow{b}=0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=0\) hay \(\left(\overrightarrow{a},\overrightarrow{b}\right)=90^o\).

Bài 2.14 (SBT trang 91)

Áp dụng tính chất giao hoán và tính chất phân phối của tích vô hướng hãy chứng minh các kết quả sau đây :

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)

\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}.\overrightarrow{b}\)

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\)

Hướng dẫn giải

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2+\overrightarrow{a}\overrightarrow{b}-\overrightarrow{a}\overrightarrow{b}+\left|\overrightarrow{b}\right|^2\)\(=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\).

Bài 2.15 (SBT trang 91)

Tam giác ABC vuông cân tại A và có AB = AB = a. Tính

a) \(\overrightarrow{AB}.\overrightarrow{AC}\)

b) \(\overrightarrow{BA}.\overrightarrow{BC}\)

c) \(\overrightarrow{AB}.\overrightarrow{BC}\)

Hướng dẫn giải

A B C
a) \(\overrightarrow{AB}.\overrightarrow{AC}=0\) do \(AB\perp AC\).
b)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+a^2}=\sqrt{2}a\).
\(\overrightarrow{BA}.\overrightarrow{BC}=BA.BC.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)=a.\sqrt{2}a.cos45^o=a^2\).
c) \(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-a^2\).

Bài 2.16 (SBT trang 91)

Cho tam giác ABC có AB = 5cm, BC = 7cm, CA = 8cm

a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) rồi suy ra giá trị của góc A ?

b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\) ?

Hướng dẫn giải

a) Có
\(\overrightarrow{BC}^2=\left(\overrightarrow{BA}+\overrightarrow{AC}\right)^2=\overrightarrow{BA}^2+\overrightarrow{AC}^2+2\overrightarrow{BA}.\overrightarrow{AC}\)
\(=\overrightarrow{BA}^2+\overrightarrow{AC}^2-2\overrightarrow{AB}.\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{\overrightarrow{BA}^2+\overrightarrow{AC}^2-\overrightarrow{BC^2}}{2}=\dfrac{5^2+8^2-7^2}{2}=20\).
\(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=\dfrac{20}{5.8}=\dfrac{1}{2}\).
Vì vậy \(\widehat{BAC}=60^o\).
b) Tương tự:
\(\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2+CB^2-AB^2}{2}=\dfrac{7^2+8^2-5^2}{2}=44\).

Bài 2.17 (SBT trang 91)

Tam giác ABC có AB = 6cm, AC = 8cm, BC = 11cm

a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và chứng tỏ rằng tam giác ABC có góc A tù

b) Trên cạnh AB lấy điểm M sao cho AM = 2cm và gọi N là trung điểm của cạnh AC. Tính \(\overrightarrow{AM}.\overrightarrow{AN}\) ?

 

Hướng dẫn giải

a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).

Bài 2.18 (SBT trang 92)

Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC. D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD ?

Hướng dẫn giải

A B C H D M
Tam giác ABC cân tại A, H là trung điểm của BC nên \(AH\perp BC\).
\(\overrightarrow{AM}.\overrightarrow{BD}=\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{AD}\right)\left(\overrightarrow{BH}+\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{BH}+\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}+\overrightarrow{AD}.\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}\right)\) (do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{AH}.\left(\overrightarrow{BH}+\overrightarrow{HD}\right)+\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{HD}\right).\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\) ( do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{BH}\right)\)
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{HC}\right)\) ( doM là trung điểm của BC).
\(=\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{AC}\)
\(=0\) (Do \(HD\perp AC\) )

Bài 2.19 (SBT trang 92)

Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) có \(\left|\overrightarrow{a}\right|=5;\left|\overrightarrow{b}\right|=12\) và \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=13\). Tính tích vô hướng \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\) và suy ra góc giữa hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{a}+\overrightarrow{b}\)

Hướng dẫn giải

\(\left|\overrightarrow{a}+\overrightarrow{b}\right|^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)
\(=5^2+12^2+2.5.12.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\)
\(=169+120cos\left(\overrightarrow{a},\overrightarrow{b}\right)=13^2\)
Suy ra: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=0\).
\(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\overrightarrow{a}\right)^2+\overrightarrow{a}.\overrightarrow{b}=5^2+5.12.0=25\).
Mặt khác \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|.\left|\overrightarrow{a}+\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
Vì vậy \(25=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
\(cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)=\dfrac{5}{13}\).
Vậy góc giữa hai véc tơ \(\overrightarrow{a}\)\(\overrightarrow{a}+\overrightarrow{b}\)\(\alpha\) sao cho \(cos\alpha=\dfrac{5}{13}\).

Bài 2.20 (SBT trang 92)

Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng \(\overrightarrow{MH}.\overrightarrow{MA}=\dfrac{1}{4}BC^2\) ?

Hướng dẫn giải

A B C H M
\(\overrightarrow{MH}=-\overrightarrow{HM}=\dfrac{-1}{2}\left(\overrightarrow{HB}+\overrightarrow{HC}\right)\);
\(\overrightarrow{MA}=-\overrightarrow{AM}=\dfrac{-1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\).
Vì vậy:
\(\overrightarrow{MH}.\overrightarrow{MA}=\dfrac{-1}{2}\left(\overrightarrow{HB}+\overrightarrow{HC}\right).\dfrac{-1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\left(\overrightarrow{HB}.\overrightarrow{AB}+\overrightarrow{HB}.\overrightarrow{AC}+\overrightarrow{HC}.\overrightarrow{AB}+\overrightarrow{HC}.\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\left(\overrightarrow{CH}.\overrightarrow{AC}+\overrightarrow{BH}.\overrightarrow{AB}\right)\) (Do H là trực tâm tam giác ABC).
\(=\dfrac{1}{4}\left[\overrightarrow{CH}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{BH}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\right]\)
\(=\dfrac{1}{4}\left(\overrightarrow{CH}.\overrightarrow{AB}+\overrightarrow{CH}.\overrightarrow{BC}+\overrightarrow{BH}.\overrightarrow{AB}+\overrightarrow{BH}.\overrightarrow{BC}\right)\)
\(=\dfrac{1}{4}\left(\overrightarrow{CH}.\overrightarrow{BC}+\overrightarrow{BH}.\overrightarrow{BC}\right)\) ( do H là trực tâm tam giác ABC).
\(=\dfrac{1}{4}\overrightarrow{BC}\left(\overrightarrow{BH}+\overrightarrow{HC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{BC}.\overrightarrow{BC}=\dfrac{1}{4}BC^2\).

Bài 2.21 (SBT trang 92)

Cho tam giác đều ABC cạnh a. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và \(\overrightarrow{AB}.\overrightarrow{BC}\) ?

Hướng dẫn giải

A B C a
a) \(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60^o=a.a.\dfrac{1}{2}\)\(=\dfrac{a^2}{2}\).
\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}==-a.a.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\)\(=-a.a.cos60^o=-\dfrac{a^2}{2}\).

Bài 2.22 (SBT trang 92)

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow{MA}.\overrightarrow{MC}=\overrightarrow{MB}.\overrightarrow{MD}\) ?

Hướng dẫn giải

A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).

Bài 2.23 (SBT trang 92)

Trong mặt phẳng Oxy cho tam giác ABC với \(A=\left(2;4\right);B=\left(1;3\right);C=\left(3;-1\right)\). Tính :

a) Tọa độ điểm D để tứ giác ABCD là hình bình hành

b) Tọa độ chân A' của đường cao vẽ từ đỉnh A

 

Hướng dẫn giải

a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\)\(\overrightarrow{BC}\) cùng phương.
\(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).

Bài 2.24 (SBT trang 92)

Trong mặt phẳng Oxy, cho tam giác ABC với \(A\left(-1;1\right);B\left(1;3\right);C\left(1;-1\right)\). Chứng minh tam giác ABC là tam giác vuông cân tại A ?

Hướng dẫn giải

\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.

Bài 2.25 (SBT trang 92)

Trong mặt phẳng Oxy cho 4 điểm \(A\left(-1;1\right);B\left(0;2\right);C\left(3;1\right);D\left(0;-2\right)\). Chứng minh rằng tứ giác ABCD là hình thang cân ?

Hướng dẫn giải

Muốn chứng minh tứ giác ABCD là hình thang cân ta cần chứng minh hai điều:
- AB//CD.
- AD = BC.
\(\overrightarrow{AB}\left(1;1\right);\overrightarrow{DC}\left(-3;-3\right)\)
Dễ thấy \(\overrightarrow{DC}=-3\overrightarrow{AB}\) nên hai véc tơ \(\overrightarrow{DC}\)\(\overrightarrow{AB}\) cùng phương.
Suy ra DC//AB. (1)
\(AD=\sqrt{\left(0-1\right)^2+\left(-2-1\right)^2}=\sqrt{10}\).
\(BC=\sqrt{\left(3-0\right)^2+\left(1-2\right)^2}=\sqrt{10}\).
Vậy AD = BC. (2)
Từ (1) và (2) suy ra tứ giác ABCD là hình thang cân.

Bài 2.26 (SBT trang 92)

Trong mặt phẳng Oxy cho 3 điểm \(A\left(-1;-1\right);B\left(3;1\right);C\left(6;0\right)\) ?

a) Chứng minh ba điểm A, B, C không thẳng hàng

b) Tính góc B của tam giác ABC 

Hướng dẫn giải

a) \(\overrightarrow{BA}\left(4;2\right);\overrightarrow{BC}\left(3;-1\right)\).
\(\dfrac{4}{3}\ne\dfrac{2}{-1}\) nên hai véc tơ \(\overrightarrow{BA};\overrightarrow{BC}\) không cùng phương hay 3 điểm A, B, C không thẳng hàng.
b) \(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\dfrac{4.3+2.\left(-1\right)}{\sqrt{4^2+2^2}.\sqrt{3^2+\left(-1\right)^2}}\)\(=\dfrac{\sqrt{2}}{2}\).
Suy ra: \(\widehat{ABC}=45^o\).

Bài 2.27 (SBT trang 92)

Trong mặt phẳng Oxy cho hai điểm \(A\left(5;5\right);B\left(3;-2\right)\). Một điểm M di động trên trục hoành Ox. Tìm giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)

Hướng dẫn giải

M thuộc trục hoành Ox nên \(M\left(x;0\right)\).
\(\overrightarrow{MA}\left(5-x;5\right);\overrightarrow{MB}\left(3-x;-2\right)\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\left(8-x;3\right)\)
Ta có:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(8-x\right)^2+3^2}\ge\sqrt{3^2}=3\).
Vậy giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) bằng 3 khi x = 8 hay \(M\left(8;0\right)\).

Bài 2.28 (SBT trang 92)

Trong mặt phẳng Oxy cho 4 điểm \(A\left(3;4\right);B\left(4;1\right);C\left(2;-3\right);D\left(-1;6\right)\)

Chứng minh rằng tứ giác ABCD nội tiếp được trong một đường tròn ?

Hướng dẫn giải

Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\)
A B C D
\(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\)
\(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\).
Suy ra \(\overrightarrow{ABC}=135^o\).
\(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\)
\(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
Suy ra \(\widehat{ADC}=45^o\)
Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\).
Vì vậy tứ giác ABCD nội tiếp.