Cộng đồng chia sẻ tri thức Doc24.vn

§2. Phương trình quy về phương trình bậc nhất, bậc hai

Lý thuyết
Mục lục
* * * * *

Bài 1 (SGK trang 62)

Giải các phương trình :

a. \(\dfrac{x^2+3x+2}{2x+3}=\dfrac{2x-5}{4}\)

b. \(\dfrac{2x+3}{x-3}-\dfrac{4}{x+3}=\dfrac{24}{x^2-9}+2\)

c. \(\sqrt{3x-5}=3\)

d. \(\sqrt{2x+5}=2\)

Hướng dẫn giải

a) ĐKXĐ:

2x + 3 ≠ 0 ⇔ x ≠ - .

Quy đồng mẫu thức rồi khử mẫu thức chung thì được

4(x2 + 3x + 2) = (2x – 5)(2x + 3) \(\Leftrightarrow\)12x + 8 = - 4x - 15

 \(\Leftrightarrow\)x = - (nhận).

b) ĐKXĐ: x ≠ ± 3. Quy đồng mẫu thức rồi khử mẫu thì được

(2x + 3)(x + 3) - 4(x - 3) = 24 + 2(x2 -9)

=> 5x = -15 => x = -3 (loại). Phương trình vô nghiệm.

c) Bình phương hai vế thì được: 3x - 5 = 9 => x = (nhận).

d) Bình phương hai vế thì được: 2x + 5 = 4 => x = - .

 

Bài 7 (SGK trang 63)

Giải các phương trình :

a. \(\sqrt{5x+6}=x-6\)

b. \(\sqrt{3-x}=\sqrt{x+2}+1\)

c. \(\sqrt{2x^2+5}=x+2\)

d. \(\sqrt{4x^2+2x+10}=3x+1\)

Hướng dẫn giải

ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).

b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.

Điều kiện x ≤ 0. Bình phương tiếp ta được:

x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).

Kết luận: Tập nghiệm S {-1}.

c) ĐKXĐ: x ≥ -2.

=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0

=> x1 =2 – (nhận), x2 = 2 + (nhận).

d) ĐK: x ≥ .

=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).

Bài 8 (SGK trang 63)

Cho phương trình \(3x^2-2\left(m+1\right)x+3m-5=0\)

Xác định m để phương trình có một nghiệp gấp 3 lần nghiệm kia. Tính các nghiệm trong trường hợp đó ?

Hướng dẫn giải

\(3x^2-2\left(m+1\right)x+3m-5=0\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

Theo yêu cầu đề bài \(x_1=3x_2\)

\(\)\(\Rightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2\left(m+1\right)}{3}\\3x^2_2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=\dfrac{2\left(m+1\right)}{3}\\3x^2_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\3x_2^2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\3\left(\dfrac{m+1}{6}\right)^2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\dfrac{m^2+2m+1}{12}=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\dfrac{m^2+2m+1}{4}=3m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\m^2+2m+1=12m-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\m^2-10m+21=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\left[{}\begin{matrix}m_1=7\\m_2=3\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m_1=7\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=\dfrac{4}{3}\end{matrix}\right.\\m_2=3\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Bài 3 (SGK trang 62)

Có 2 rổ quýt chứa số quýt bằng nhau. Nếu lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ 2 bằng \(\dfrac{1}{3}\) của bình phương số quả còn lại ở rổ thứ nhất. Hỏi số quả quýt ở mỗi rổ lúc ban đầu là bao nhiêu ?

Hướng dẫn giải

Gọi x là số quýt chứa trong một rổ lúc đầu. Điều kiện x nguyên, x > 30. Ta có phương trình

(x – 30)2 = x + 30 ⇔ x2 – 3x + 810 = 0

⇔ x = 45 (nhận), x = 18 (loại).

Trả lời: Số quýt ở mỗi rổ lúc đầu: 45 quả.


Bài 2 (SGK trang 62)

Giải và biện luận các phương trình sau theo tham số m :

a. \(m\left(x-2\right)=3x+1\)

b. \(m^2x+6=4x+3m\)

c. \(\left(2m+1\right)x-2m=3x-2\)

Hướng dẫn giải

a) ⇔ (m – 3)x = 2m + 1.

  • Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
  • Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

  • Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
  • Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
  • Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

  • Nếu m ≠ 1 có nghiệm duy nhất x = 1.
  • Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.


Bài 6 (SGK trang 62, 63)

Giải các phương trình :

a. \(\left|3x-2\right|=2x+3\)

b. \(\left|2x-1\right|=\left|-5x-2\right|\)

c. \(\dfrac{x-1}{2x-3}=\dfrac{-3x+1}{\left|x+1\right|}\)

d. \(\left|2x+5\right|=x^2+5x+1\)

Hướng dẫn giải

a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:

(3x – 2)2 = (2x + 3)2 => (3x - 2)2 – (2x + 3)2 = 0

⇔ (3x -2 + 2x + 3)(3x – 2 – 2x – 3) = 0

=> x1 = (nhận), x2 = 5 (nhận)

Tập nghiệm S = {; 5}.

b) Bình phương hai vế:

(2x – 1)2 = (5x + 2)2 => (2x - 1 + 5x + 2)(2x – 1 – 5x – 2) = 0

=> x1 = , x2 = -1.

c) ĐKXĐ: x ≠ , x ≠ -1. Quy đồng rồi khử mẫu thức chung

(x – 1)|x + 1| = (2x – 3)(-3x + 1)

  • Với x ≥ -1 ta được: x2 – 1 = -6x2 + 11x – 3 => x1 = ;
    x2 = .
  • Với x < -1 ta được: -x2 + 1 = -6x2 + 11x – 3 => x1 = (loại vì không thỏa mãn đk x < -1); x2 = (loại vì x > -1)

Kết luận: Tập nghiệm S = {; }

d) ĐKXĐ: x2 +5x +1 > 0

  • Với x ≥ ta được: 2x + 5 = x2 + 5x + 1
    => x1 = -4 (loại); x2 = 1 (nhận)
  • Với x < ta được: -2x – 5 = x2 + 5x + 1

=> x1 =-6 (nhận); x2 = -1 (loại).

Kết luận: Tập nghiệm S = {1; -6}.

Bài 5 (SGK trang 62)

Giải các phương trình sau bằng máy tính bỏ túi (làm tròn  kết quả đến chữ số thập phân thứ ba)

a. \(2x^2-5x-4=0\)

b. \(-3x^2+4x+2=0\)

c. \(3x^2+7x+4=0\)

d. \(9x^2-6x-4=0\)

Hướng dẫn giải

a) Nếu sử dụng máy tính CASIO fx-500 MS, ta ấn liên tiếp các phím

màn hình hiện ra x1 = 3.137458609.

Ấn tiếp màn hình hiện ra x2 = -0.637458608.

Làm tròn kết quả đến chữ số thập phân thứ ba ta được nghiệm gần đúng của phương trình là x1 ≈ 3.137 và x2 ≈ -0.637.

b) Ấn

được

x1 = 1.72075922. Muốn lấy tròn 3 số thập phân ta ấn tiếp

Kết quả x1 = 1.721. Ấn tiếp được x2 = 0.387.

c) Ấn liên tiếp

Kết quả x1 = -1.000. Ấn tiếp được x2 = -1.333.

d) Ấn

Kết quả x1 = 0.333. Ấn tiếp được x2 = 0.333.

Bài 10 (SBT trang 69)

Giải các phương trình :

a) \(\sqrt{3x-4}=x-3\)

b) \(\sqrt{x^2-2x+3}=2x-1\)

c) \(\sqrt{2x^2+3x+7}=x+2\)

d) \(\sqrt{3x^2-4x-4}=\sqrt{2x+5}\)

Hướng dẫn giải

a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.

Bài 11 (SBT trang 69)

Giải và biện luận theo tham số m các phương trình sau :

a) \(\left|3x+2m\right|=x-m\)

b) \(\left|2x+m\right|=\left|x-2m+2\right|\)

c) \(mx^2+\left(2m-1\right)x+m-2=0\)

d) \(\dfrac{\sqrt{4x-2}}{2x-1}=m-1\)

Hướng dẫn giải

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

Bài 8 (SBT trang 68)

Cho phương trình :

           \(9x^2+2\left(m^2-1\right)x+1=0\)

a) Chứng tỏ rằng với \(m>2\) phương trình có hai nghiệm phân biệt âm

b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) mà \(x_1+x_2=-4\)

Hướng dẫn giải

Để phương trình có hai nghiệm phân biệt âm :
\(\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9>0\left(1\right)\\\dfrac{-2\left(m^2-1\right)}{9.2}< 0\left(2\right)\\\dfrac{1}{9}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2>9\\m^2-1>0\end{matrix}\right.\)
Với \(m>2\) thì \(\left(m^2-1\right)^2-9>\left(2^2-1\right)^2-9=0\) nên (1) thỏa mãn.
Với \(m>2\) thì \(m^2-1>2^2-1=3>0\) nên (2) thỏa mãn.

Vậy \(m>2\) phương trình có hai nghiệm âm.

Bài 6 (SBT trang 68)

Giải và biện luận theo tham số m các phương trình sau :

a) \(m\left(m-6\right)x+m=-8x+m^2-2\)

b) \(\dfrac{\left(m-x\right)x+3}{x+1}=2m-1\)

c) \(\dfrac{\left(2m+1\right)x-m}{x-1}=x+m\)

d) \(\dfrac{\left(3m-2\right)x-5}{x-m}=-3\)

Hướng dẫn giải

a) \(m\left(m-6\right)x+m=-8x+m^2-2\)
\(\Leftrightarrow x\left(m^2-6m+8\right)=m^2-m-2\)
- Xét \(m^2-6m+8=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)
Th1. Thay \(m=4\) vào phương trình ta có:
\(0.x=10\) (vô nghiệm)
Th2. Thay \(m=2\) vào phương trình ta có:
\(0.x=0\) (luôn đúng với mọi \(x\in R\))
- Xét: \(m^2-6m+8\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne2\end{matrix}\right.\)
Khi đó phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
Biện luận:
- \(m=4\) phương trình vô nghiệm.
- \(m=2\) phương trình luôn có nghiệm.
- \(m\ne4\)\(m\ne2\) phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)

Bài 7 (SBT trang 68)

Cho phương trình :

                        \(\left(m+2\right)x^2+\left(2m+1\right)x+2=0\)

a) Xác định m để phương trình có hai nghiệm trái dấu và tổng hai nghiệm bằng -3

b) Với giá trị nào của m thì phương trình có nghiệm kép ? Tìm nghiệm kép đó ?

Hướng dẫn giải

a) Để phương trình có hai nghiệm trái dấu khi và chỉ khi: \(ac< 0\Leftrightarrow2\left(m+2\right)< 0\)\(\Leftrightarrow m+2< 0\)\(\Leftrightarrow m< -2\). (1)
Tổng hai nghiệm đó bằng - 3 khi và chỉ khi:
\(x_1+x_2=\dfrac{2m+1}{m+2}=-3\)
\(\Rightarrow2m+1=3\left(m+2\right)\)\(\Leftrightarrow m=-5\)
Kết hợp với điều kiện (1) ta được \(m=-5\) là giá trị cần tìm.

 

Bài 9 (SBT trang 69)

Cho phương trình bậc hai với tham số m :

              \(3x^2-2\left(m+1\right)x+3m-5=0\)

Xác định m để phương trình có một nghiệm gấp 3 lần nghiệm kia. Tính các nghiệm trong trường hợp đó ?

Hướng dẫn giải

Để phương trình có nghiệm thì \(\Delta\ge0\Leftrightarrow\left(m+1\right)^2-3\left(3m-5\right)\ge0\) \(\Leftrightarrow m^2-7m+16\ge0\)
\(\Leftrightarrow\left(m-\dfrac{7}{2}\right)^2+\dfrac{15}{4}\ge0\forall m\in R\).
Vậy phương trình luôn có nghiệm với mọi m.
Gọi \(x_1;x_2\) là nghiệm của phương trình, theo giả thiết ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1=3x_2\\x_1.x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\x_1=\dfrac{m+1}{2}\\x_1.x_2=\dfrac{3m-5}{3}\end{matrix}\right.\) (1)
Từ (1) ta có: \(\dfrac{m+1}{6}.\dfrac{m+1}{2}=\dfrac{3m-5}{3}\Leftrightarrow\left(m-1\right)^2=4\left(3m-5\right)\)
\(\Leftrightarrow m^2-14m+21=0\Leftrightarrow\left[{}\begin{matrix}m=7-2\sqrt{7}\\m=7+2\sqrt{7}\end{matrix}\right.\)
Với \(m=7-2\sqrt{7}\) ta có:
\(x_1=\dfrac{m+1}{2}=\dfrac{7-2\sqrt{7}+1}{2}=4-\sqrt{7}\)
\(x_2=\dfrac{m+1}{6}=\dfrac{7-2\sqrt{7}+1}{6}=\dfrac{4-\sqrt{7}}{3}\)
Với \(m=7+2\sqrt{7}\) ta có:
\(x_1=\dfrac{m+1}{2}=\dfrac{7+2\sqrt{7}+1}{2}=4+\sqrt{7}\)
\(x_2=\dfrac{m+1}{6}=\dfrac{7+2\sqrt{7}+1}{6}=\dfrac{4+\sqrt{7}}{3}\)