Cộng đồng chia sẻ tri thức Doc24.vn

Nhân đa thức với đa thức

Lý thuyết
Mục lục
* * * * *

Bài 10 (Sách bài tập - trang 6)

Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi số nguyên n ?

Hướng dẫn giải

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

Bài 9 (Sách bài tập - trang 6)

Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2

Chứng minh rằng ab chia cho 3 dư 2

Hướng dẫn giải

Do a chia cho 3 dư 1 => a = 3k +1 ( k \(\in\) N)

Do b chia cho 3 dư 2 => b = 3q + 2 ( q \(\in\) N )

=> ab = (3k +1)(3q +2) = 9kq + 6k + 3q + 2

Vì 9 \(⋮\) 3 => 9kq \(⋮\) 3

Vì 6 \(⋮\) 3 => 6k \(⋮\) 3

Vì 3 \(⋮\) 3 => 3q \(⋮\) 3

=> 9kq + 6k + 3q \(⋮\) 3

=> 9kq + 6k + 3q + 2 chia cho 3 dư 2

Hay ab chia cho 3 dư 2

Bài 8 (Sách bài tập - trang 6)

Chứng minh :

a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

b) \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)

Hướng dẫn giải

a.

\(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

ta có

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

=>ĐPCM

b.

ta có

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=>ĐPCM

Bài 2.2 - Bài tập bổ sung (Sách bài tập - trang 6)

Chứng minh rằng biểu thức \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\) chia hết cho 3 với mọi giá trị của n ?

Hướng dẫn giải

Ta có \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=3n-2n^2-3+2n-n^2-5n=-3n-3\)

mà -3n chia hết cho 3,-3 chia hết cho 3

=> biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3(đpcm)

Bài 2.1 - Bài tập bổ sung (Sách bài tập - trang 6)

Kết quả của phép tính \(\left(x-5\right)\left(x+3\right)\) lf :

(A) \(x^2-15\)                            (B) \(x^2-8x-15\)

(C) \(x^2+2x-15\)                   (D) \(x^2-2x-15\)

Hãy chọn kết quả đúng ?

Hướng dẫn giải

Ta có \(\left(x-5\right)\left(x+3\right)=x^2+3x-5x-15=x^2-2x-15\)

Vậy ta chọn câu D.

Bài 6 (Sách bài tập - trang 6)

Thực hiện phép tính :

a) \(\left(5x-2y\right)\left(x^2-xy+1\right)\)

b) \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

c) \(\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)\)

Hướng dẫn giải

\(a,\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y-2xy^2-2y=5x^3-7x^2y-2xy^2+5x-2y\)\(b\left(x-1\right)\left(x+1\right)\left(x-2\right)=\left(x^2-1\right)\left(x+2\right)=x^3+2x^2-x-2\)\(c,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)

Bài 7 (Sách bài tập - trang 6)

Thực hiện phép tính :

a) \(\left(\dfrac{1}{2}x-1\right)\left(2x-3\right)\)

b) \(\left(x-7\right)\left(x-5\right)\)

c) \(\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x-1\right)\)

Hướng dẫn giải

\(\left(\dfrac{1}{2}x-1\right)\left(2x-3\right)=x^2-\dfrac{3}{2}x-2x+3=x^2-\dfrac{1}{2}x+3\)\(b,\left(x-7\right)\left(x-5\right)=x^2-5x-7x+35=x^2-12x+35\)\(c,\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x-1\right)=\left(x^2-\dfrac{1}{4}\right)\left(4x-1\right)=4x^3-x^2-x+\dfrac{1}{4}\)