Có thể đăng nhập bằng tài khoản Olm.vn, Hoc24.vn, Bingbe.com
Ôn tập chương III
Bài 19 trang 77 Sách bài tập (SBT) Toán Đại số 10
Hãy viết điều kiện của mỗi phương trình
a) \(\sqrt { - 3x + 2} = {2 \over {x + 1}}\)
b) \(\sqrt {x - 2} + x = 3{x^2} + 1 - \sqrt { - x - 4} \)
c) \({{3x + 5} \over {\sqrt {3{x^2} + 6x + 11} }} = \sqrt {2x + 1} \)
d) \({{\sqrt { - 3x + 2} } \over {{x^2} - 9}} = x + 2\)
Hướng dẫn giải
Điều kiện của mỗi phương trình:
a) \(x \le {2 \over 3}\) và \(x \ne - 1\)
b) \(x \ge 2\) và \(x \le - 4\). Không có số thực x nào thỏa mãn điều kiện của phương trình.
c) \(3{x^2} + 6x + 11 > 0\) và \(x \ge - {1 \over 2}\). Vì ta có \(3{x^2} + 6x + 11 = 3{(x + 1)^2} + 8 > 0\) với mọi x, nên điều kiện của phương trình là \(x \ge - {1 \over 2}\)
d) \(x \ge - 4\) và \(x \ne 3,x \ne - 3\)
Bài 20 trang 77 Sách bài tập (SBT) Toán Đại số 10
Xác định m để mỗi cặp phương trình sau tương đương
a) \(3x - 1 = 0\) và \({{3mx + 1} \over {x - 2}} + 2m - 1 = 0\)
b) \({x^2} + 3x - 4 = 0\) và \(m{x^2} - 4x - m + 4 = 0\)
Hướng dẫn giải
Hai phương trình tương đương khi chúng có cùng tập nghiệm.
a) \(3x - 1 = 0 \Leftrightarrow x = {1 \over 3}\)
Suy ra \(x = {1 \over 3}\) là nghiệm của phương trình \({{3mx + 1} \over {x - 2}} + 2m - 1 = 0\)
\( \Rightarrow {{3m.{1 \over 3} + 1} \over {{1 \over 3} - 2}} + 2m - 1 = 0 \Leftrightarrow m = {8 \over 7}\)
b)
\(x_{}^2 + 3x - 4 = 0 \Leftrightarrow \left\{ \matrix{
x = 1 \hfill \cr
x = - 4 \hfill \cr} \right.\)
Suy ra x = 1 và x = -4 là nghiệm của phương trình \(mx_{}^2 - 4x - m + 4 = 0\)
\(\eqalign{
& \Rightarrow \left\{ \matrix{
m.1_{}^2 - 4.1 - m + 4 = 0 \hfill \cr
m.( - 4)_{}^2 - 4.( - 4) - m + 4 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
\forall m \hfill \cr
m = - {4 \over 3} \hfill \cr} \right. \Leftrightarrow m = - {4 \over 3} \cr} \)
Bài 21 trang 77 Sách bài tập (SBT) Toán Đại số 10
Giải và biện luận các phương trình sau theo tham số m
a) \(2m(x - 2) + 4 = (3 - {m^2})x\)
b) \({{(m + 3)x} \over {2x - 1}} = 3m + 2\)
c) \({{8mx} \over {x + 3}} = (4m + 1)x + 1\)
d) \({{(2 - m)x} \over {x - 2}} = (m - 1)x - 1\)
Hướng dẫn giải
a) Phương trình đã cho tương đương với phương trình
\((m - 1)(m + 3)x = 4(m - 1)\)
Với \(m \ne 1\) và \(m \ne - 3\) phương trình có nghiệm \(x = {4 \over {m + 3}}\);
Với m = 1 mọi số thực x đều là nghiệm của phương trình;
Với m = -3 phương trình vô nghiệm.
b) Điều kiện của phương trình là \(m \ne {1 \over 2}\). Khi đó ta có
\({{(m + 3)x} \over {2x - 1}} = 3m + 2 \Leftrightarrow (m + 2)x = (3m + 2)(2x - 1)\)
\( \Leftrightarrow (5m + 1)x = 3m + 2\)
Nếu $\(m \ne - {1 \over 5}\) thì phương trình có nghiệm \(x = {{3m + 2} \over {5m + 1}}\)
Giá trị này là nghiệm của phương trình đã cho khi
\({{3m + 2} \over {5m + 1}} \ne {1 \over 2} \Leftrightarrow 6m + 4 \ne 5m + 1 \Leftrightarrow m \ne - 3\)
Nếu \(m = - {1 \over 5}\) phương trình cuối vô nghiệm.
Kết luận.
Với \(m = - {1 \over 5}\) hoặc \(m = - 3\) phương trình đã cho vô nghiệm.
Với \(m \ne - {1 \over 5}\) và \(m \ne - 3\) nghiệm của phương trình đã cho là \(x = {{3m + 2} \over {5m + 1}}\)
c) Điều kiện của phương trình là \(x \ne - 3\). Khi đó ta có
\({{8mx} \over {x + 3}} = (4m + 1)x + 1 \Leftrightarrow 8mx = {\rm{[}}(4m + 1)x + 1](x + 3)\)
\( \Leftrightarrow (4m + 1){x^2} + 4(m + 1)x + 3 = 0.(1)\) (1)
Với \(m = - {1 \over 4}\) phương trình (1) trở thành
\(3x + 3 = 0 \Leftrightarrow x = - 1\)
Với \(m \ne - {1 \over 4}\) phương trình (1) là một phương trình bậc hai có
\(\Delta ' = {(2m - 1)^2} \ge 0\)
Lúc đó phương trình (1) có hai nghiệm
\({x_1} = - {3 \over {4m + 1}},{x_2} = - 1\)
Ta có \( - {3 \over {4m + 1}} \ne - 3 \Leftrightarrow 4m + 1 \ne 1 \Leftrightarrow m \ne 0\)
Kết luận
Với m = 0 hoặc \(m = - {1 \over 4}\) phương trình đã cho có một nghiệm x = -1.
Với \(m \ne 0\) và \(m \ne - {1 \over 4}\) phương trình đã cho có hai nghiệm
x = -1 và \(x = - {3 \over {4m + 1}}\)
d) Điều kiện của phương trình là \(x \ne 2\). Khi đó ta có
\({{(2 - m)x} \over {x - 2}} = (m - 1)x - 1 \Leftrightarrow (2 - m)x = (x - 2){\rm{[}}(m - 1)x - 1]\)
\( \Leftrightarrow (m - 1){x^2} - (m + 1)x + 2 = 0(2)\)
Với m = 1 phương trình (2) có dạng
\( - 2x + 2 = 0 \Leftrightarrow x = 1\)
Với \(m \ne 1\) thì phương trình (2) là một phương trình bậc hai có :
\(\Delta = {(m - 3)^2} \ge 0\)
Lúc đó phương trình (2) có hai nghiệm
\({x_1} = 1,{x_2} = {2 \over {m - 1}}\)
Ta có: \({2 \over {m - 1}} \ne 2 \Leftrightarrow m - 1 \ne 1 \Leftrightarrow m \ne 2\)
Kết luận :
Với m = 1 và m = 2 phương trình đã cho có một nghiệm là x = 1.
Với \(m \ne 1\) và \(m \ne 2\) phương trình đã cho có hai nghiệm
x = 1 và \(x = {2 \over {m - 1}}\)
Bài 22 trang 77 Sách bài tập (SBT) Toán Đại số 10
Cho phương trình
\(3{x^2} + 2(3m - 1)x + 3{m^2} - m + 1 = 0\)
a) Với giá trị nào của m thì phương trình vô nghiệm?
b) Giải phương trình khi m = -1.
Hướng dẫn giải
a) Phương trình vô nghiệm khi \(\Delta ' < 0\)
Xét \(\Delta ' = {(3m - 1)^2} - 3(3{m^2} - m + 1) = - 3m - 2\)
\(\Delta ' < 0 \Leftrightarrow - 3m - 2 < 0\)
\( \Leftrightarrow m > - {2 \over 3}\)
b) Khi m = -1 phương trình đã cho trở thành \(3{x^2} - 8x + 5 = 0\) và có hai nghiệm \({x_1} = 1;{x_2} = {5 \over 3}\)
Bài 23 trang 77 Sách bài tập (SBT) Toán Đại số 10
Cho phương trình
\((m + 1){x^2} + (3m - 1)x + 2m - 2 = 0\)
Xác định m để phương trình có hai nghiệm \(x{}_1,{x_2}\) mà \(x{}_1 + {x_2} = 3\)
Tính các nghiệm trong trường hợp đó.
Hướng dẫn giải
Với $$m \ne - 1$$ ta có: \(\Delta = {(m - 3)^2} \ge 0\), do đó phương trình luôn luôn có hai nghiệm \({x_1},{x_2}\)
Xét \({x_1} + {x_2} = 3 \Leftrightarrow {{1 - 3m} \over {m + 1}} = 3 \Leftrightarrow m = - {1 \over 3}\)
Lúc đó phương trình đã cho có hai nghiệm x = -1 và x = 4.
Bài 24 trang 77 Sách bài tập (SBT) Toán Đại số 10
Giải các phương trình
a) \(\sqrt {5x + 3} = 3x - 7\)
b) \(\sqrt {3{x^2} - 2x - 1} = 3x + 1\)
c) \({{\sqrt {4{x^2} + 7x - 2} } \over {x + 2}} = \sqrt 2 \)
d) \(\sqrt {2{x^2} + 3x - 4} = \sqrt {7x + 2} \)
Hướng dẫn giải
a) Điều kiện của phương trình là \(x \ge - {3 \over 5}\). Ta có
\(\sqrt {5x + 3} = 3x - 7 = > 5x + 3 = {(3x - 7)^2}\)
\( \Leftrightarrow 9{x^2} - 47x + 46 = 0\)
Phương trình cuối có hai nghiệm \({x_1} = {{47 + \sqrt {553} } \over {18}},{x_2} = {{47 - \sqrt {553} } \over {18}}\)
Cả hai giá trị này đều thỏa mãn điều kiện của phương trình, tuy nhiên khi thay vào phương trình đã cho thì giá trị \({x_2}\) bị loại.
Đáp số: \({x_1} = {{47 + \sqrt {553} } \over {18}}\)
b) Điều kiện của phương trình là \(3{x^2} - 2x - 1 \ge 0\). Ta có:
\(\sqrt {3{x^2} - 2x - 1} = 3x + 1 = > 3{x^2} - 2x - 1 = {(3x + 1)^2}\)
\( \Leftrightarrow 6{x^2} + 8x + 2 = 0\)
Phương trình cuối có hai nghiệm \({x_1} = - {1 \over 3},{x_2} = - 1\)
Cả hai giá trị này đều thỏa mãn điều kiện của phương trình, nhưng thử vào phương trình đã cho thì giá trị \({x_2} = - 1\) bị loại.
Đáp số: \(x = - {1 \over 3}\)
c)Điều kiện của phương trình là \(4{x^2} + 7x - 2 \ge 0\) và \(x \ne - 2\). Ta có:
\({{\sqrt {4{x^2} + 7x - 2} } \over {x + 2}} = \sqrt 2 = > 4{x^2} + 7x - 2 = 2{(x + 2)^2}\)
\( \Leftrightarrow 2{x^2} - x - 10 = 0\)
Phương trình cuối có hai nghiệm là \({x_1} = {5 \over 2},{x_2} = - 2\)
Chỉ có giá trị \({x_1} = {5 \over 2},{x_2} = - 2\)
Chỉ có giá trị \({x_1} = {5 \over 2}\) thỏa mãn điều kiện và nghiệm đúng phương trình đã cho.
Đáp số: \(x = {5 \over 2}\)
d)Điều kiện của phương trình là \(2{x^2} + 3x - 4 \ge 0\) và \(7x + 2 \ge 0\). Ta có:
\(\sqrt {2{x^2} + 3x - 4} = \sqrt {7x + 2} = > 2{x^2} + 3x - 4 = 7x + 2 \Leftrightarrow 2{x^2} - 4x - 6 = 0\)
Phương trình cuối có hai nghiệm \({x_1} = 3,{x_2} = - 1\), nhưng giá trị \({x_2} = - 1\) không thỏa mãn điều kiện của phương tình nên bị loại, giá trị \({x_1} = 3\) nghiệm đúng phương trình đã cho.
Vậy nghiệm của phương trình đa cho là x = 3.
Bài 25 trang 77 Sách bài tập (SBT) Toán Đại số 10
Giải và biện luận các phương trình sau theo tham số m.
a) \(|2x - 5m| = 2x - 3m\)
b) \(|3x + 4m| = |4x - 7m|\)
c) $\((m + 1){x^2} + (2m - 3)x + m + 2 = 0\)
d) \({{{x^2} - (m + 1)x - {{21} \over 4}} \over {x - 3}} = 2x + m\)
Hướng dẫn giải
a) Với \(x \ge {{5m} \over 2}\) phương trình đã cho trở thành
\(2x - 5m = 2x - 3m \Leftrightarrow 2m = 0 \Leftrightarrow m = 0\)
Vậy với m = 0 thì mọi \(x \ge 0\) đều là nghiệm của phương trình.
Với \(x < {{5m} \over 2}\) phương trình đã cho trở thành
\( - 2x + 5m = 2x - 3m\)
\( \Leftrightarrow 4x = 8m \Leftrightarrow x = 2m\)
Vì $\(x < {{5m} \over 2}\) nên \(2m < {{5m} \over 2} \Leftrightarrow m > 0\).
Kết luận:
Với m > 0 phương trình có nghiệm là x = 2m.
Với m = 0 phương trình có nghiệm là mọi số thực không âm.
Với m < 0 phương trình vô nghiệm.
b) Ta có:
\(\eqalign{
& |3x + 4m| = |4x - 7m| \cr
& \Leftrightarrow \left[ \matrix{
3x + 4m = 4x - 7m \hfill \cr
3x + 4m = - 4x + 7m \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 11m \hfill \cr
x = {{3m} \over 7} \hfill \cr} \right. \cr} \)
Vậy phương trình đã cho có hai nghiệm x = 11m và $\(x = {{3m} \over 7}\) với mọi giá trị của m.
c) Với m = -1 phương trình đã cho trở thành
\( - 5x + 1 = 0 \Leftrightarrow x = {1 \over 5}$\)
Với \(m \ne - 1\) phương trình đã cho là một phương trình bậc hai, có biệt thức \(\Delta = - 24m + 1.\)
Nếu \(m \le {1 \over {24}}\) thì \(\Delta \ge 0\) phương trình có hai nghiệm
\({x_{1,2}} = {{2m - 3 \pm \sqrt {1 - 24m} } \over {2(m + 1)}}\)
Kết luận:
Với \(x > {1 \over {24}}\) phương trình vô nghiệm.
Với \(x \le {1 \over {24}}\) và \(m \ne - 1\) phương trình có hai nghiệm.
\({x_{1,2}} = {{2m - 3 \pm \sqrt {1 - 24m} } \over {2(m + 1)}}\)
Với m = -1 phương trình có nghiệm là \(x = {1 \over 5}\)
d) Điều kiện của phương trình là: \(x \ne 3.\) Ta có:
\({{{x^2} - (m + 1)x - {{21} \over 4}} \over {x - 3}} = 2x + m = > {x^2} - (m + 1)x - {{21} \over 4} = (x - 3)(2x + m)\)
\( \Leftrightarrow {x^2} + (2m - 5)x + {{21} \over 4} - 3m = 0\)
Phương trình cuối luôn có nghiệm \({x_1} = {3 \over 2},{x_2} = {{7 - 4m} \over 2}\)
Ta có: \({{7 - 4m} \over 2} \ne 3 \Leftrightarrow m \ne {1 \over 4}\)
Kết luận
Với \(m \ne {1 \over 4}\) phương trình đã cho có hai nghiệm và \(x = {3 \over 2}\) và \(x = {{7 - 4m} \over 2}\)
Với \(m = {1 \over 4}\) phương trình có một nghiệm \(x = {3 \over 2}\)
Bài 26 trang 78 Sách bài tập (SBT) Toán Đại số 10
Giải phương trình
\(\root 3 \of {{1 \over 2} + x} + \sqrt {{1 \over 2} - x} = 1\)
Hướng dẫn giải
Đặt \(u = \root 3 \of {{1 \over 2} + x} ,v = \sqrt {{1 \over 2} - x} \) điều kiện \(v \ge 0\)
Ta được hệ phương trình
\(\left\{ \matrix{
u + v = 1 \hfill \cr
{u^3} + {v^2} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
v = 1 - u(1) \hfill \cr
{u^3} + {v^2} - 2u = 0(2) \hfill \cr} \right.\)
(2) \( \Leftrightarrow u({u^2} + u - 2) = 0\)
Phương trình cuối có 3 nghiệm \({u_1} = 0,{u_2} = 1,{u_3} = 2\)
+Với u = 0 ta có v = 1 => \(x = - {1 \over 2}\)
+Với u =1 ta có v = 0 => \(x = {1 \over 2}\)
+Với u = -2 ta có v = 3 => \(x = - {{17} \over 2}\)
Vậy phương trình đã cho có ba nghiệm
\(x = - {1 \over 2}\), \(x = {1 \over 2}\) và \(x = - {{17} \over 2}\)
Bài 27 trang 78 Sách bài tập (SBT) Toán Đại số 10
Giải các hệ phương trình
a) \(\left\{ \matrix{
- 7x + 3y = - 5 \hfill \cr
5x - 2y = 4; \hfill \cr} \right.\)
b) \(\left\{ \matrix{
4x - 2y = 6 \hfill \cr
- 2x + y = - 3 \hfill \cr} \right.\)
c) \(\left\{ \matrix{
- 0,5x + 0,4y = 0,7 \hfill \cr
0,3x - 0,2y = 0,4; \hfill \cr} \right.\)
d) \(\left\{ \matrix{
{3 \over 5}x - {4 \over 3}y = {2 \over 5} \hfill \cr
- {2 \over 3}x - {5 \over 9}y = {4 \over 3}; \hfill \cr} \right.\)
Hướng dẫn giải
a)
\(\eqalign{
& \left\{ \matrix{
- 7x + 3y = - 5 \hfill \cr
5x - 2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 14x + 6y = - 10 \hfill \cr
15x - 6y = 12 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = 2 \hfill \cr
5x - 2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2 \hfill \cr
y = 3 \hfill \cr} \right. \cr} \)
b)
\(\eqalign{
& \left\{ \matrix{
4x - 2y = 6 \hfill \cr
- 2x + y = - 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x - y = 3 \hfill \cr
2x - y = 3 \hfill \cr} \right. \cr
& \Leftrightarrow 2x - y = 3 \cr} \)
Vậy hệ phương trình có vô số nghiệm \((x;y) = (a;2a - 3)\), a tùy ý.
c)
\(\eqalign{
& \left\{ \matrix{
- 0,5x + 0,4y = 0,7 \hfill \cr
0,3x - 0,2y = 0,4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 0,5x + 0,4y = 0,7 \hfill \cr
0,6x - 0,4y = 0,8 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = 15 \hfill \cr
0,3x - 0,2y = 0,4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 15 \hfill \cr
y = 20,5 \hfill \cr} \right. \cr} \)
d)
\(\eqalign{
& \left\{ \matrix{
{3 \over 5}x - {4 \over 3}y = {2 \over 5} \hfill \cr
- {2 \over 3}x - {5 \over 9}y = {4 \over 3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{3 \over 5}x - {4 \over 3}y = {2 \over 5} \hfill \cr
- {3 \over 5}x - {1 \over 2}y = {6 \over 5} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- {{11} \over 6}y = {8 \over 5} \hfill \cr
{3 \over 5}x - {4 \over 3}y = {2 \over 5} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - {{14} \over {11}} \hfill \cr
y = - {{48} \over {55}} \hfill \cr} \right. \cr} \)
Bài 28 trang 78 Sách bài tập (SBT) Toán Đại số 10
Giải các hệ phương trình
a) \(\left\{ \matrix{
x + 2y - 3z = 2 \hfill \cr
2x + 7y + z = 5 \hfill \cr
- 3x + 3y - 2z = - 7; \hfill \cr} \right.\)
b) \(\left\{ \matrix{
- x - 3y + 4z = 3 \hfill \cr
3x + 4y - 2z = 5 \hfill \cr
2x + y + 2z = 4; \hfill \cr} \right.\)
Hướng dẫn giải
a) \(\left\{ \matrix{
x + 2y - 3z = 2 \hfill \cr
2x + 7y + z = 5 \hfill \cr
- 3x + 3y - 2z = - 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 2y - 3z = 2 \hfill \cr
3y + 7z = 1 \hfill \cr
- 32z = - 4 \hfill \cr} \right.\)
Đáp số: \((x;y;z) = ({{55} \over {24}};{1 \over {24}};{1 \over 8})\)
b)
\(\eqalign{
& \left\{ \matrix{
- x - 3y + 4z = 3 \hfill \cr
3x + 4y - 2z = 5 \hfill \cr
2x + y + 2z = 4 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- x - 2y + 4z = 3 \hfill \cr
- 5y + 10z = 14 \hfill \cr
- 5y + 10z = 10 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- x - 3y + 4z = 3 \hfill \cr
- 5y + 10z = 14 \hfill \cr
0y + 0z = - 4 \hfill \cr} \right. \cr} \)
Phương trình cuối vô nghiệm, suy ra hệ phương trình đã cho vô nghiệm.