Cộng đồng chia sẻ tri thức Doc24.vn

§3. Tích của vectơ với một số

Lý thuyết
Mục lục
* * * * *

Bài 1.30 trang 34 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC. Điểm I trên cạnh AC sao cho \(CI = {1 \over 4}CA\), J là điểm mà 

\(\overrightarrow {BJ}  = {1 \over 2}\overrightarrow {AC}  - {2 \over 3}\overrightarrow {AB} \)

a) Chứng minh \(\overrightarrow {BI}  = {3 \over 4}\overrightarrow {AC}  - \overrightarrow {AB} \)

b) Chứng minh B, I, J thẳng hàng.

c) Hãy dựng điểm J thỏa mãn điều kiện đề bài.

Hướng dẫn giải

(Xem h.1.50)

a) \(\overrightarrow {BI}  = \overrightarrow {BA}  + \overrightarrow {AI}  =  - \overrightarrow {AB}  + {3 \over 4}\overrightarrow {AC} \)

b) \({2 \over 3}\overrightarrow {BI}  = {2 \over 3}\left( { - \overrightarrow {AB}  + {3 \over 4}\overrightarrow {AC} } \right) =  - {2 \over 3}\overrightarrow {AB}  + {1 \over 2}\overrightarrow {AC} \)

Vậy \(\overrightarrow {BJ}  = {2 \over 3}\overrightarrow {BI}\)

B, J, I thẳng hàng.

c) Học sinh tự dựng điểm J.

Bài 1.20 trang 33 Sách bài tập (SBT) Toán Hình học 10

Tìm giá trị của m sao cho \(\overrightarrow a  = m\overrightarrow b \) trong các trường hợp sau:

a) \(\overrightarrow a  = \overrightarrow b  \ne \overrightarrow 0 \)

b) \(\overrightarrow a  = \overrightarrow { - b} \) và \(\overrightarrow a  \ne \overrightarrow 0 \)

c) \(\overrightarrow a ,\overrightarrow b \) cùng hướng và \(\left| {\overrightarrow a } \right| = 20,\left| {\overrightarrow b } \right| = 5\)

d)  \(\overrightarrow a ,\overrightarrow b \) ngược hướng và \(\left| {\overrightarrow a } \right| = 5,\left| {\overrightarrow b } \right| = 15\)

e) \(\overrightarrow a  = \overrightarrow 0 ,\overrightarrow b  \ne \overrightarrow 0 \)

g) \(\overrightarrow a  \ne \overrightarrow 0 ,\overrightarrow b  = \overrightarrow 0 \)

h) \(\overrightarrow a  = \overrightarrow 0 ,\overrightarrow b  = \overrightarrow 0 \)

Hướng dẫn giải

a) \(\vec a = \vec b \Rightarrow m = 1\)

b) \(\vec a =  - \vec b \Rightarrow m =  - 1\)

c) \(\vec a,\vec b\) cùng hướng \( \Rightarrow m > 0\) và \(\left| m \right| = {{\left| {\vec a} \right|} \over {\left| {\vec b} \right|}} = {{20} \over 5} = 4\)

Vậy m = 4.

d) \(\vec a,\vec b\) ngược hướng \( \Rightarrow m < 0\) và \(\left| m \right| = {{\left| {\vec a} \right|} \over {\left| {\vec b} \right|}} = {5 \over {15}} = {1 \over 3}\)

Vậy \(m =  - {1 \over 3}\)

e) \(\eqalign{
& \vec a = \vec 0 \Rightarrow \left| {\vec a} \right| = 0 \cr 
& \Rightarrow \left| m \right| = {{\left| {\vec a} \right|} \over {\left| {\vec b} \right|}} = {0 \over {\left| {\vec b} \right|}} = 0 \Rightarrow m = 0 \cr} \)

g) \(\vec b = \vec 0 \Rightarrow \left| {\vec b} \right| = 0 \Rightarrow \left| m \right| = {{\left| {\vec a} \right|} \over {\left| {\vec b} \right|}} = {{\left| {\vec a} \right|} \over 0}\)

=> không tồn tại m.

h) \(\vec a = \vec b = \vec 0 \Rightarrow \) mọi giá trị của m đều thỏa mãn.

Bài 1.21 trang 33 Sách bài tập (SBT) Toán Hình học 10

Chứng minh rằng:

a) Nếu \(\overrightarrow a  = \overrightarrow b \) thì \(m\overrightarrow a  = m\overrightarrow b \)

b) \(m\overrightarrow a  = m\overrightarrow b \) và \(m \ne 0\) thì \(\overrightarrow a  = \overrightarrow b \)

c) Nếu \(m\overrightarrow a  = n\overrightarrow a \) và \(\overrightarrow a  \ne 0\) thì m = n

Hướng dẫn giải

a) \(\overrightarrow a  = \overrightarrow b  =  > \left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\) và \(\overrightarrow a ,\overrightarrow b \) cùng hướng. Ta có \(\left| {m\overrightarrow a } \right| = \left| m \right|\left| {\overrightarrow a } \right|,\left| {m\overrightarrow b } \right| = \left| m \right|\left| {\overrightarrow b } \right|\) do đó \(\left| {m\overrightarrow a } \right| = \left| {m\overrightarrow b } \right|\)

\(m\overrightarrow a ,m\overrightarrow b \) cùng hướng . Vậy \(m\overrightarrow a  = m\overrightarrow b \)

b) \(m\overrightarrow a  = m\overrightarrow b  =  > \left| {m\overrightarrow a } \right| = \left| {m\overrightarrow b } \right| =  > \left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\) vì \(m \ne 0\)

\(m\overrightarrow a ,m\overrightarrow b \) cùng hướng => \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.

Vậy \(\overrightarrow a  = \overrightarrow b \)

c) \(m\overrightarrow a  = n\overrightarrow a  =  > \left| {m\overrightarrow a } \right| = \left| {n\overrightarrow a } \right| =  > \left| m \right| = \left| n \right|\) vì \(\overrightarrow a  \ne \overrightarrow 0 \)

\(m\overrightarrow a ,n\overrightarrow a \) cùng hướng => m và n cùng dấu.

Vậy m = n.

Bài 1.22 trang 33 Sách bài tập (SBT) Toán Hình học 10

Chứng minh rằng tổng của n véc tơ \(\overrightarrow a \) bằng \(n\overrightarrow a \) (n là số nguyên dương).

Hướng dẫn giải

\(\overrightarrow a  + \overrightarrow a  + ... + \overrightarrow a  = (1 + 1 + ... + 1)\overrightarrow a  = n\overrightarrow a \)

Bài 1.23 trang 33 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC. Chứng minh rằng nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) thì G là trọng tâm của tam giác ABC.

Hướng dẫn giải

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GA}  + 2\overrightarrow {GI}  = \overrightarrow 0 \) (I là trung điểm của BC)

\( \Leftrightarrow \overrightarrow {GA}  =  - 2\overrightarrow {GI} \)

Từ đó suy ra ba điểm A, G, I thẳng hàng, trong đó GA = 2GI, G nằm giữa A và I.

Vậy G là trọng tâm của tam giác ABC.

Bài 1.24 trang 33 Sách bài tập (SBT) Toán Hình học 10

Cho hai tam giác ABC và A'B'C'. Chứng minh rằng nếu \(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \) thì hai tam giác đó có cùng trọng tâm.

Hướng dẫn giải

Gọ G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'. Ta có:

\(\overrightarrow {AA'}  = \overrightarrow {AG}  + \overrightarrow {GG'}  + \overrightarrow {G'A'} \)

\(\overrightarrow {BB'}  = \overrightarrow {BG}  + \overrightarrow {GG'}  + \overrightarrow {G'B'} \)

\(\overrightarrow {CC'}  = \overrightarrow {CG}  + \overrightarrow {GG'}  + \overrightarrow {G'C'} \)

Cộng từng vế của ba đẳng thức trên ta được

\(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = 3\overrightarrow {GG'} \)

Do đó, nếu \(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \) thì \(\overrightarrow {GG'}  = \overrightarrow 0 \) hay G = G'

Chú ý: Từ chứng minh trên cũng suy ra rằng nếu hai tam giác ABC và A'B'C' có cùng trọng tâm thì \(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \) 

Bài 1.25 trang 33 Sách bài tập (SBT) Toán Hình học 10

Cho hai vec tơ không cùng phương \(\overrightarrow a \) và \(\overrightarrow b \). Dựng các vec tơ:

a) \(2\overrightarrow a  + \overrightarrow b \)

b) \(\overrightarrow a  - 2\overrightarrow b \)

c) \( - \overrightarrow a  + {1 \over 2}\overrightarrow b\)

Hướng dẫn giải

(Xem h.1. 45)

Hãy vẽ trường hợp \(\overrightarrow a  - 2\overrightarrow b \)

Bài 1.26 trang 33 Sách bài tập (SBT) Toán Hình học 10

Cho lục giác đều ABCDEF tâm O có cạnh a.

a) Phân tích vec tơ \(\overrightarrow {AD} \) theo hai vec tơ  \(\overrightarrow {AB} \) và \(\overrightarrow {AF} \)

b) Tính độ dài của vec tơ \({1 \over 2}\overrightarrow {AB}  + {1 \over 2}\overrightarrow {BC} \) theo a

Hướng dẫn giải

(Xem h.1.46)

a) \(\overrightarrow {AD}  = 2\overrightarrow {AO}  = 2(\overrightarrow {AB}  + \overrightarrow {AF} ) = 2\overrightarrow {AB}  + 2\overrightarrow {AF} \)

b) \({1 \over 2}\overrightarrow {AB}  + {1 \over 2}\overrightarrow {BC}  = {1 \over 2}(\overrightarrow {AB}  + \overrightarrow {BC} ) = {1 \over 2}\overrightarrow {AC}\)

\( =  > \left| {{1 \over 2}\overrightarrow {AB}  + {1 \over 2}\overrightarrow {BC} } \right| = {1 \over 2}\overrightarrow {AC}  = {1 \over 2}a\sqrt 3  = {{a\sqrt 3 } \over 2}\)

Bài 1.27 trang 33 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC có trung tuyến \(\overrightarrow {AM} \) (M là trung điểm của BC). Phân tích vec tơ \(\overrightarrow {AM} \) theo hai vec tơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \)

Hướng dẫn giải

(h.1.47)

Gọi E, F lần lượt là trung điểm của AB, AC.

Ta có tứ giác AFME là hình bình hành nên \(\overrightarrow {AM}  = \overrightarrow {AE}  + \overrightarrow {AF}  = {1 \over 2}\overrightarrow {AB}  + {1 \over 2}\overrightarrow {AC} \)

Có thể chứng minh cách khác như sau:

Vì M là trung điểm của BC nên \(2\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AC} \)

Hay \(\overrightarrow {AM}  = {1 \over 2}(\overrightarrow {AB}  + \overrightarrow {AC} )\)

\( = {1 \over 2}\overrightarrow {AB}  + {1 \over 2}\overrightarrow {AC} \)

Bài 1.28 trang 34 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN.

Phân tích vec tơ \(\overrightarrow {AK} \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \)

Hướng dẫn giải

(h.1.48)

\(\overrightarrow {AK}  = {1 \over 2}(\overrightarrow {AM}  + \overrightarrow {AN} )\)

\( = {1 \over 2}({1 \over 2}\overrightarrow {AB}  + {2 \over 3}\overrightarrow {AC} )\)

\( = {1 \over 4}\overrightarrow {AB}  + {1 \over 3}\overrightarrow {AC} \)