Cộng đồng chia sẻ tri thức Doc24.vn

§3. Các hệ thức lượng giác trong tam giác và giải tam giác

Lý thuyết
Mục lục
* * * * *

Bài 2.29 trang 101 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC có cạnh \(a = 2\sqrt 3 ,b = 2\) và \(\widehat C = {30^0}\)

a)Tính cạnh c, góc A và diện tích S của tam giác ABC;

b)Tính chiều cao \({h_a}\) và đường trung tuyến \({m_a}\) của tam giác ABC.

Hướng dẫn giải

a) Theo định lí cô sin ta có:

\(\eqalign{
& {c^2} = {a^2} + {b^2} - 2ab\cos C \cr 
& = 12 + 4 - 2.2\sqrt 3 .2.{{\sqrt 3 } \over 2} = 4 \cr} \)

Vậy c = 2 và tam giác ABC cân tại A có b = c = 2.

Ta có: \(\widehat C = {30^0}\), vậy \(\widehat B = {30^0}\) và \(\widehat A = {180^0} - ({30^0} + {30^0}) = {120^0}\)

\({S_{ABC}} = {1 \over 2}ac\sin B = {1 \over 2}.2\sqrt 3 .2.{1 \over 2} = \sqrt 3 \)

b) \({h_a} = {{2S} \over a} = {{2\sqrt 3 } \over {2\sqrt 3 }} = 1\). Vì tam giác ABC cân tại A nên \({h_a} = {m_a} = 1\)

Bài 2.30 trang 101 Sách bài tập (SBT) Toán Hình học 10

Tính góc lớn nhất của tam giác ABC biết a = 3, b = 4, c = 6. Tính đường cao ứng với cạnh lớn nhất của tam giác.

Hướng dẫn giải

Ta có c = 6 là cạnh lớn nhất của tam giác. Do đó \(\widehat C\) là góc lớn nhất.

\(\eqalign{
& \cos C = {{{a^2} + {b^2} + {c^2}} \over {2ab}} = {{{3^2} + {4^2} + {6^2}} \over {2.3.4}} \cr 
& = - {{11} \over {24}} = > \widehat C \approx {117^0}17' \cr} \)

Muốn tính đường cao ứng với cạnh lớn nhất ta dùng công thức Hê – rông để tính diện tích tam giác và từ đó suy ra đường cao tương ứng.

\(S = \sqrt {p(p - a)(p - b)(p - c)} \) với \(p = {1 \over 2}(3 + 4 + 6) = {{13} \over 2}\)

\(S = \sqrt {{{13} \over 2}\left( {{{13} \over 2} - 3} \right)\left( {{{13} \over 2} - 4} \right)\left( {{{13} \over 2} - 6} \right)}  = {{\sqrt {455} } \over 4}$\)

Ta có:

\({h_c} = {{2S} \over c} = {{\sqrt {455} } \over {2.6}} = {{\sqrt {455} } \over {12}}\)

Bài 2.31 trang 101 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC  có \(a = 2\sqrt 3 ,b = 2\sqrt 2 ,c = \sqrt 6  - \sqrt 2 \). Tính các góc A, B và các độ dài , R, r của tam giác đó.

Hướng dẫn giải

Ta có:

\(\eqalign{
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} \cr 
& = {{8 + 6 + 2 - 2\sqrt {12} - 12} \over {4\sqrt 2 (\sqrt 6 - \sqrt 2 )}} = {{4 - 4\sqrt 3 } \over {8\sqrt 3 - 8}} \cr} \)

\( = {{4(1 - \sqrt 3 )} \over {8(\sqrt 3  - 1)}} =  - {1 \over 2}\)

\(\eqalign{
& \cos B = {{{c^2} + {a^2} - {b^2}} \over {2.ca}} \cr 
& = {{6 + 2 - 2\sqrt {12} + 12 - 8} \over {2.(\sqrt 6 - \sqrt 2 ).2\sqrt 3 }} \cr 
& = {{12 - 2\sqrt {12} } \over {4\sqrt {18} - 4\sqrt 6 }} \cr} \)

\( = {{4(3 - \sqrt 3 )} \over {4\sqrt 2 (3 - \sqrt 3 )}} = {1 \over {\sqrt 2 }} = {{\sqrt 2 } \over 2}\)

Vậy \(\widehat B = {45^0}\)

\(\eqalign{
& {h_a} = {{2S} \over a} = {{ac\sin B} \over a} = c\sin B \cr 
& = (\sqrt 6 - \sqrt 2 ){{\sqrt 2 } \over 2} = \sqrt 3 - 1 \cr} \)

\({b \over {\sin B}} = 2R =  > R = {b \over {2\sin B}} = {{2\sqrt 2 } \over {2.{{\sqrt 2 } \over 2}}} = 2\)

\(S = pr =  > r = {S \over p} = {{{1 \over 2}ac\sin B} \over {{1 \over 2}(a + b + c)}} = {{ac\sin B} \over {a + b + c}}\)

\( = {{2\sqrt 3 (\sqrt 6  - \sqrt 2 ){{\sqrt 2 } \over 2}} \over {2\sqrt 3  + 2\sqrt 2  + \sqrt 6  - \sqrt 2 }} = {{\sqrt 3 (\sqrt 6  - \sqrt 2 )} \over {\sqrt 6  + \sqrt 3  + 1}}\)

Bài 2.32 trang 101 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC có \(a = 4\sqrt 7 cm,b = 6cm,c = 8cm\). Tính diện tích S, đường cao \({h_a}\) và bán kính R của đường tròn ngoại tiếp tam giác đó.

Hướng dẫn giải

Ta có:

\(\cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} = {{36 + 64 - 112} \over {2.6.8}} =  - {1 \over 8}\)

\(=  > \sin A = \sqrt {1 - {{\cos }^2}A}  = \sqrt {1 - {1 \over {64}}}  = {{3\sqrt 7 } \over 8}\)

\(S = {1 \over 2}bc\sin A = {1 \over 2}.6.8.{{3\sqrt 7 } \over 8} = 9\sqrt 7 (c{m^2})\)

\(h = {{2S} \over a} = {{18\sqrt 7 } \over {4\sqrt 7 }} = {9 \over 2} = 4,5(cm)\)

\(R = {{abc} \over {4S}} = {{4\sqrt 7 .6.8} \over {4.9\sqrt 7 }} = {{16} \over 3}(cm)\)

Bài 2.33 trang 102 Sách bài tập (SBT) Toán Hình học 10

Gọi \({m_a},{m_b},{m_c}\) là các trung tuyến lần lượt ứng với các cạnh a, b, c của tam giác ABC.

a) Tính \({m_a}\), biết rằng a = 26, b = 18, c = 16

b) Chứng minh rằng: \(4(m_a^2 + m_{_b}^2 + m_{_c}^2) = 3({a^2} + {b^2} + {c^2})\)

Hướng dẫn giải

a) \(m_a^2 = \dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{{18}^2} + {{16}^2}}}{2} - \dfrac{{{{26}^2}}}{4}\)

\(\eqalign{
& = {{324 + 256} \over 2} - {{676} \over 4} = {{484} \over 4} \cr 
& = > {m_a} = {{22} \over 2} = 11 \cr} \)

b) \(\left\{ \matrix{
m_a^2 = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4} \hfill \cr 
m_b^2 = {{{a^2} + {c^2}} \over 2} - {{{b^2}} \over 4} \hfill \cr 
m_c^2 = {{{a^2} + {b^2}} \over 2} - {{{c^2}} \over 4} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4m_a^2 = 2({b^2} + {c^2}) - {a^2}\;(1) \hfill \cr 
4m_b^2 = 2({a^2} + {c^2}) - {b^2}\;(2) \hfill \cr 
4m_c^2 = 2({a^2} + {b^2}) - {c^2}\;(3) \hfill \cr} \right.\)

Cộng (1), (2), (3) theo vế với vế ta được:

\(4(m_a^2 + m_{_b}^2 + m_{_c}^2) = 3({a^2} + {b^2} + {c^2})\)

Bài 2.34 trang 102 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC có b + c = 2a. Chứng minh rằng:

a) 2sinA = sinB + sinC

b) \({2 \over {{h_a}}} = {1 \over {{h_b}}} + {1 \over {{h_c}}}\)

Hướng dẫn giải

a) Theo định lý sin ta có: \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

Ta suy ra: \({a \over {\sin A}} = {{b + c} \over {\sin B + \sin C}} = {{2a} \over {\sin B + \sin C}}\)

\( =  > 2sinA = sinB + \sin C\)

b) Đối với tam giác ABC ta có: \(S = {1 \over 2}ab\sin C = {1 \over 2}{h_C}.c = {{abc} \over {4R}}\)

Ta suy ra \({h_c} = {{ab} \over {2R}}\). Tương tự ta có \({h_b} = {{ac} \over {2R}},{h_a} = {{bc} \over {2R}}\).

Do đó:

\({1 \over {{h_b}}} + {1 \over {{h_c}}} = 2R\left( {{1 \over {ac}} + {1 \over {ab}}} \right) = 2R{{b + c} \over {abc}}\) mà b + c = 2a

Nên \({1 \over {{h_b}}} + {1 \over {{h_c}}} = {{2R.2a} \over {abc}} = {{2R.2} \over {bc}} = {2 \over {{h_a}}}\)

Vậy \({2 \over {{h_a}}} = {1 \over {{h_b}}} + {1 \over {{h_c}}}\)

Bài 2.35 trang 102 Sách bài tập (SBT) Toán Hình học 10

Chứng minh rằng trong tam giác ABC ta có các hệ thức:

a) \(\sin A = \sin B\cos C + \sin C\cos B\)

b) \({h_a} = 2R\sin B\sin C\)

Hướng dẫn giải

a) Theo định lý sin ta có: \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

Do đó: \(a = 2R\sin A,b = 2R\sin B,c = 2R\sin C\)

Thay các giá trị này vào biểu thức: \(a = b\cos C + c\cos B\), ta có:

\(2R\sin A = 2R\sin B\cos C + 2R\sin C\cos B\)

\( =  > \sin A = \sin B\cos C + {\mathop{\rm sinCcosB}\nolimits} .\)

Bài 2.36 trang 102 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC có \(bc = {a^2}\). Chứng minh rằng :

a) \({\sin ^2}A = \sin B.\sin C\)

b) \({h_b}.{h_c} = h_a^2\)

Hướng dẫn giải

a) Theo giả thiết ta có: \({a^2} = bc\)

Thay \(a = 2R\sin A,b = 2R\sin B,c = 2R\sin C\) vào hệ thức trên ta có:

\(4{R^2}{\sin ^2}A = 2R\sin B.2R{\mathop{\rm sinC}\nolimits} \)

\( =  > {\sin ^2}A = \sin B.\sin C\)

b) Ta có \(2S = a{h_a} = b{h_b} = c{h_c}\)

 Do đó: \({a^2}h_a^2 = b.c.{h_b}.{h_c}\)

Theo giả thiết: \({a^2} = bc\) nên ta suy ra \(h_a^2 = {h_b}.{h_c}\)

Bài 2.37 trang 102 Sách bài tập (SBT) Toán Hình học 10

Chứng minh rằng diện tích hình bình hành bằng tích hai cạnh liên tiếp với sin của góc xen giữa chúng.

Hướng dẫn giải

(h.2.29)

Xét hình bình hành ABCD có \(AB = a,AD = b,\widehat {BAD} = \alpha \) và BH là đường cao, ta có \(BH \bot AD\) tại H

Gọi S là diện tích hình bình hành ABCD, ta có S = AD. BH với \(BH = AB\sin \alpha \)

Vậy \(S = AD.AB\sin \alpha  = a.b.\sin \alpha \)

Nếu \(\widehat {BAD} = \alpha \) thì \(\widehat {ABC} = {180^0} - \alpha \)

Khi đó ta vẫn có \(\sin \widehat {BAD} = \sin \widehat {ABC}\)

Khi đó ta vẫn có

Nhận xét: Diện tích hình bình hành ABCD gấp đôi diện tích tam giác ABD mà tam giác ABD có diện tích là \({1 \over 2}ab\sin \alpha \). Do đó ta suy ra diện tích của hình bình hành bằng \(ab\sin \alpha \)

Bài 2.38 trang 102 Sách bài tập (SBT) Toán Hình học 10

Cho tứ giác lồi ABCD có đường chéo AC = x, đường chéo BD = y và góc tạo bởi AC và BD là \(\alpha \). Gọi S là diện tích của tứ giác ABCD.

a) Chứng minh rằng \(S = {1 \over 2}x.y.\sin \alpha \)

b) Nêu kết quả trong trường hợp AC vuông góc với BD.

Hướng dẫn giải

(h.2.30)

a) Ta có: \({S_{ABCD}} = {S_{ABD}} + {S_{CBD}}\)

Vẽ AH và CK vuông góc với BD.

Gọi I là giao điểm của hai đường chéo AC và BD. Ta có: \(AH = AI\sin \alpha \)

\({S_{ABCD}} = {1 \over 2}AH.BD + {1 \over 2}CK.BD\)

\( = {1 \over 2}BD(AH + CK)\)

\( = {1 \over 2}BD(AI + IC)sin\alpha  = {1 \over 2}BD.AC\sin \alpha \)

\({S_{ABCD}} = {1 \over 2}x.y\sin \alpha \)

b) Nếu \(AC \bot BD\) thì \(\sin \alpha  = 1\), khi đó \({S_{ABCD}} = {1 \over 2}x.y\). Như vậy nếu tứ giác lồi ABCD có hai đường chéo AC và BD vuông góc với nhau thì diện tích của tứ giác bằng một nửa tích độ dài của hai đường chéo.

Loading...