Cộng đồng chia sẻ tri thức Doc24.vn

Đề Thi Khảo Sát Chất Lượng Học Kỳ 1 Môn Toán 12 THPT Chuyên Nguyễn Huệ

1302dffab56bac4844b5a6db6c3679e1
Gửi bởi: Phạm Thọ Thái Dương vào ngày 2020-12-29 01:59:54 || Kiểu file: PDF Lượt xem: 125 | Lượt Download: 4 | File size: 0.520545 Mb

Nội dung tài liệu Xem trước tài liệu

Link tài liệu:
Tải xuống

Các tài liệu liên quan

Thông tin tài liệu

TRƯỜNG THPT CHUYÊN
NGUYỄN HUỆ

ĐỀ THI HỌC KÌ I LỚP 12 NĂM HỌC 2019 - 2020
Môn: Toán
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Mã đề thi 169

(Thí sinh không được sử dụng tài liệu)
Họ và tên thí sinh: ................................................................................ SBD: ..................

Câu 1: Cho hàm số y  log 2 x 2 . Khẳng định nào sau đây sai?
A. Hàm số đồng biến trên  0;  .

B. Hàm số nghịch biến trên  ;0  .

C. Đồ thị hàm số có một tiệm cận ngang.

D. Đồ thị hàm số có một tiệm cận đứng.

Câu 2: Khoảng đồng biến của hàm số y  2 x  x 2 là
A. 1; 2  .

B.   ;1 .

Câu 3: Thể tích khối cầu có bán kính 6cm là
A. 216  cm3  .
B. 288  cm3  .

C. 1;   .

D.  0; 1 .

C. 432  cm3  .

D. 864  cm3  .

Câu 4: Cho hàm số y  f ( x) xác định, liên tục trên  và có bảng biến thiên
x

2
0
2


0

0

0

y
y

1

3

3

Khẳng định nào sau đây đúng?
A. Phương trình f  x   0 có 2 nghiệm.

B. Hàm số có đúng một cực trị.

C. Hàm số có giá trị nhỏ nhất bằng  3 .

D. Hàm số có giá trị lớn nhất bằng 1.

A.  2 x  3 e x .

C.  x 2  x  e x .

Câu 5: Hàm số y   x 2  3 x  3 e x có đạo hàm là
B. 3xe x .

Câu 6: Điểm cực đại của đồ thị hàm số y  x 3  3x 2  2 là
A.  2;0  .
B.  0;2  .
C. (2;6) .

D. x 2e x .
D.  2; 18  .

Câu 7: Cho hàm số y  f ( x) có đồ thị là đường cong trong hình dưới đây.

Tìm số nghiệm thực của phương trình f ( x)  1 .
y
2

1
O

x

A. 2.
B. 3.
C. 1.
Câu 8: Trong các hàm số sau, hàm số nào đồng biến trên  ?
x 1
A. y  x 4  2 x 2  3.
B. y 
C. y  x3  4 x  5.
.
2x  3

D. 0.
D. y  x 2  x  1.
Trang 1/25 - Mã đề thi 169

Câu 9: Hàm số y  f ( x) có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
A. Hàm số nghịch biến trên  .

B. Hàm số nghịch biến trên  \ 2 .

C. Hàm số nghịch biến trên  ;2  ;  2;   .

D. Hàm số đồng biến trên  ;2  ;  2;   .

Câu 10: Hàm số y  f  x  có đạo hàm là f '( x)  x 2 ( x  1)3 (2  3x) . Số điểm cực trị của hàm số f  x  là
A. 0.

B. 2.

C. 3.

Câu 11: Tiệm cận đứng của đồ thị hàm số y 
A. y  1 .

B. x  1 .

D. 1.

x 1
là đường thẳng có phương trình
x 1
C. y  1 .
D. x  1 .

1
Câu 12: Cho log 1    a . Khẳng định nào sau đây đúng?
2 5
5a
.
2

A. log 2 5  a .

B. log 2 25  log 2 5 

2
C. log 5 4   .
a

1
1
D. log 2  log 2
 3a .
5
25

Câu 13: Với a, b là hai số thực dương và a  1 , log
A. 2  log a b .

B.

1 1
 log a b .
2 2

a

 a b  bằng

C. 2  2log a b .

D.

1
 log a b .
2

Câu 14: Tập xác định D của hàm số y  log3  log 2 x  là
A. D   .

B. D   0;1 .

Câu 15: Tập xác định D của hàm số y   x  2 
A. D   2;   .

B. D   .

C. D   0;   .
2

D. D  1;   .


C. D   ;2  .

D. D   \  2 .

Câu 16: Cho khối nón có độ dài đường sinh bằng a 5 và chiều cao bằng a. Thể tích của khối nón đã
cho bằng
A. 2 a3.

B.

4 5 a 3
.
3

C.

4 a 3
.
3

D.

2 a 3
.
3

Câu 17: Cho hình chóp S . ABCD có đáy là hình chữ nhật. SA  ( ABCD), AB  a, AD  2a , góc giữa
SC và mặt đáy là 450 . Tính thể tích của khối chóp S . ABCD .

A. V 

2a 3 5
.
2

B. V 

a3 5
.
3

C. V 

2a 3 5
.
15

D. V 

2a 3 5
.
3

Câu 18: Một hình đa diện có các mặt là các tam giác. Gọi M và C lần lượt là số mặt và số cạnh của
hình đa diện đó. Khẳng định nào sau đây đúng?
A. 3M  2C .
B. C  M  2 .
C. 3C  2 M .
D. M  C .
Câu 19: Tính thể tích của khối lập phương ABCDA ' B ' C ' D ' , biết AC '  a 6 .
A. 2a3 .
B. 6a3 .
C. a3 .
D. 2a 3 2 .
Trang 2/25 - Mã đề thi 169

Câu 20: Cho hình chữ nhật ABCD có AB  2 AD. Quay hình chữ nhật đã cho quanh AD và AB ta
được hai hình trụ tròn xoay có thể tích lần lượt là V1 , V2 . Khẳng định nào dưới đây đúng?
A. V1  2V2 .

B. V2  4V1.

C. V1  4V2 .

D. V2  2V1.

Câu 21: Biết log 2 x  6 log 4 a  4 log 2 b  log 1 c với a, b, c là các số thực dương bất kì. Khẳng định nào
2

sau đây đúng?
a3
a 3c
ac 3
A. x  2 .
B. x  2 .
C. x  a3  b2  c .
D. x  2 .
bc
b
b
x
x
Câu 22: Cho các hàm số y  a và y  b với a, b là những số thực dương khác 1 có đồ thị như hình vẽ.
Đường thẳng y  3 cắt trục tung, đồ thị hàm số y  a x và y  b x lần lượt tại H , M , N . Biết rằng
2 HM  3MN , khẳng định nào sau đây đúng?

.
A. a  b .
B. 3a  5b .
C. a  b .
D. a 2  b3 .
Câu 23: Một doanh nghiệp sản xuất và bán một loại sản phẩm với giá 45 (ngàn đồng) mỗi sản phẩm, tại
giá bán này khách hàng sẽ mua 60 sản phẩm mỗi tháng. Doanh nghiệp dự định tăng giá bán và họ ước
tính rằng nếu tăng 2 (ngàn đồng) trong giá bán thì mỗi tháng sẽ bán ít hơn 6 sản phẩm. Biết rằng chi phí
sản xuất mỗi sản phẩm là 27 (ngàn đồng). Hỏi doanh nghiệp nên bán sản phẩm với giá nào để lợi nhuận
thu được là lớn nhất ?
A. 47 ngàn đồng.
B. 46 ngàn đồng.
C. 48 ngàn đồng.
D. 49 ngàn đồng.
5

3

3

5

Câu 24: Một chất điểm chuyển động theo quy luật S  6t 2  t 3. Vận tốc v (m/s) của chuyển động đạt giá
trị lớn nhất tại thời điểm t (s) bằng
A. 2 (s).
B. 12 (s).
C. 6 (s).
D. 4 (s).

x3
 (m  2) x 2  (m  8) x  m 2  1 nghịch biến trên .
3
A. m  2.
B. m  2.
C. m  .
D. m  2.
Câu 26: Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3 . Cắt hình nón đã cho bởi mặt phẳng
đi qua đỉnh và cách tâm của đáy một khoảng bằng 2 , ta được thiết diện có diện tích bằng
16 11
8 11
A. 20.
B. 10.
C.
.
D.
.
3
3
Câu 27: Cho hàm số y  ax 3  bx 2  cx  d có đồ thị là đường cong trong hình dưới đây. Khẳng định nào
sau đây đúng?
Câu 25: Tìm m để hàm số f ( x)  (m  2)

y

O

A. a  0 , c  0 , d  0 .
C. a  0 , c  0 , d  0 .

x

B. a  0 , c  0 , d  0 .
D. a  0 , c  0 , d  0 .
Trang 3/25 - Mã đề thi 169

Câu 28: Tìm tất cả các giá trị thực của m để đường thẳng d : y  mx  2 cắt đồ thị  C  : y 

x 1
tại hai
x

điểm thuộc hai nhánh của đồ thị  C  .
1
B. m  .
2

A. m  0.

C. m  1.

D. m  0.

Câu 29: Tổng độ dài l tất cả các cạnh của khối mười hai mặt đều có cạnh bằng 2 là
A. l  60 .
B. l  16 .
C. l  24 .
D. l  8 .
Câu 30: Cho hình chóp S . ABCD có đáy là hình vuông cạnh a . Cạnh bên SA  a 6 và vuông góc với

đáy  ABCD  . Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S . ABCD .
B. 8 a 2 .

A. a 2 2 .

C. 2 a 2 .

D. 2a 2 .

Câu 31: Cho hình hộp chữ nhật ABCD. ABC D có AB  a , AD  2 a , AA  3a . Thể tích khối nón có
đỉnh trùng với tâm của hình chữ nhật ABCD , đường tròn đáy ngoại tiếp hình chữ nhật AB C D  là

15 a3
A.
.
4

5 a3
B.
.
4

C. 15 a 3 .

D. 5 a3 .

Câu 32: Gọi S là tập hợp các giá trị của tham số m để phương trình 9x  2m.3x  m2  8m  0 có 2
nghiệm phân biệt x1 , x2 thỏa mãn x1  x2  2 . Tính tổng các phần tử của S .
A.

9
.
2

B. 9 .

C. 1 .

D. 8 .

Câu 33: Cho tứ diện ABCD có ABC là tam giác đều cạnh bằng a . BCD vuông cân tại D và nằm

trong mặt phẳng vuông góc với  ABC  . Tính theo a thể tích của tứ diện ABCD .
3a3
A.
.
8

3a3
C.
.
24

a3 3
B.
.
8

a3 3
D.
.
24

3

Câu 34: Số điểm cực trị của hàm số y  x  4 x 2  3 là
A. 4.

B. 2.

C. 3.

D. 0.

Câu 35: Hàm số f  x   log  x 2019  2020 x  có đạo hàm là
A. f   x  
C. f   x  

x

2019

 2020 x  ln10

2019 x 2018  2020

 2019 x

2018

B. f   x  

.

 2020  loge

x 2019  2020 x

.

D. f   x  

x 2019  2020 x
.
 2019 x2018  2020  ln 2018

 2019 x

2018

 2020  ln10

x 2019  2020 x

.

  1200 . Góc giữa
Câu 36: Cho lăng trụ đứng ABC . A ' B ' C ' có đáy là ABC với AB  2a, AC  a, BAC

 A ' BC  và  ABC  là 450 . Tính thể tích của khối lăng trụ
A.

a3 7
.
7

B.

a3 7
.
14

C.

ABC . A ' B ' C ' .

3a 3 7
.
7

D.

3a 3 7
.
14

Câu 37: Cho khối chóp đều S . ABCD có cạnh đáy là 2a , cạnh bên là 3a . Tính thể tích của khối chóp
S . ABCD .
4a 3 7
a3 7
2a 3 17
2a 3 34
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 38: Cho hình đa diện đều loại 4;3 cạnh là 2a . Gọi S là tổng diện tích của tất cả các mặt của hình

đa diện đó. Khi đó:
A. S  a 2 3 .

B. S  6a 2 .

C. S  4a 2 .

D. S  24a 2 .
Trang 4/25 - Mã đề thi 169

Câu 39: Cho hình chóp S . ABCD có đáy là hình thang cân với AB / /CD, AB  2a, AD  CD  a . Hình

chiếu vuông góc của S xuống mặt đáy là trung điểm của AC . Biết góc giữa SC và  ABCD  là 450 , tính
thể tích của khối chóp S . ABCD .
A.

9a 3
.
8

B.

a3 6
.
8

C.

a3 6
.
6

D.

3a3
.
8

Câu 40: Tìm tất cả các giá trị của tham số m để hàm số y  x3  3mx 2  6mx  m có hai điểm cực trị.
A. m   0;8  .

B. m   0;2  .

C. m   ;0    8;   .

D. m   ;0    2;   .

Câu 41: Cho hàm số f  x  có đạo hàm trên  và có đồ thị hàm y  f   x  như hình vẽ. Xét hàm số
g  x   f  x 2  2  . Khẳng định nào dưới đây sai?

A. Hàm số g  x  nghịch biến trên  1; 0  .

B. Hàm số g  x  nghịch biến trên  ; 2  .

C. Hàm số g  x  nghịch biến trên  0; 2  .

D. Hàm số g  x  đồng biến trên  2;   .

Câu 42: Cho hàm số bậc ba y  f ( x) có đồ thị là đường cong hình bên. Đồ thị hàm số

g ( x) 

( x 2  3x  2) x  1
có tất cả bao nhiêu đường tiệm cận đứng ?
x[ f 2 ( x)  f ( x)]

A. 3.
B. 2.
C. 4.
D. 5.
Câu 43: Một chiếc hộp hình trụ với bán kính đáy bằng chiều cao và bằng 10cm. Một học sinh bỏ một

miếng bìa hình vuông vào chiếc hộp đó và thấy hai cạnh đối diện của miếng bìa lần lượt là các dây cung
của hai đường tròn đáy hộp và miếng bìa không song song với trục của hộp. Hỏi diện tích của miếng bìa
đó bằng bao nhiêu?

A. 250cm2 .

B. 200cm2 .

C. 150cm2 .

D. 300cm2 .

Trang 5/25 - Mã đề thi 169

Câu 44: Cho hình trụ có hai đáy là hình tròn  O  và  O  . Trên hai đường tròn đáy lấy hai điểm A, B

sao cho góc giữa AB và mặt phẳng chứa đường tròn đáy bằng 45o và khoảng cách giữa hai đường thẳng
AB với OO bằng
A. V 

 a3 2
2

a 2
. Biết bán kính đáy bằng a, thể tích của khối trụ là
2

.

B. V   a 3 2.

C. V 

 a3 2
3

.

D. V 

 a3 2
6

.

Câu 45: Cho lăng trụ xiên ABC . A ' B ' C ' có đáy ABC đều cạnh a . Góc giữa cạnh bên và mặt đáy là 600
và A ' A  A ' B  A ' C . Tính thể tích của khối lăng trụ.
a3 3
a3 3
a3 3
3a 3 3
A. V 
.
B. V 
.
C. V 
.
D. V 
.
8
12
4
2
Câu 46: Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số f ( x) 

x 2  mx  m
trên
x 1

đoạn 1;2 bằng 2 ?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 47: Một Bác nông dân cần xây một hố ga không có nắp dạng hình hộp chữ nhật có thể tích
25600(cm3 ) , tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Tính diện tích của đáy hố ga để
khi xây hố ga tiết kiệm nguyên vật liệu nhất.
A. 640(cm 2 ) .
B. 1600(cm 2 ) .
C. 160(cm 2 ) .
D. 6400(cm 2 ) .
1 
a 1

Câu 48: Cho hàm số f ( x)  ln 1  2  . Biết rằng f '(2)  f '(3)  ...  f '(2019) 
là phân số tối
b
 x 
giản với a, b là các số nguyên dương. Khẳng định nào sau đây đúng?
A. 2a  b .
B. a  b .
C. a  b .
D. a  2b .

Câu 49: Cho hình chóp đều S . ABC có tất cả các cạnh đều bằng a . Mặt phẳng  P  song song với mặt

phẳng  ABC  và cắt các cạnh SA, SB, SC lần lượt tại A ', B ', C ' . Tính diện tích của tam giác A ' B ' C ' biết
VSA ' B 'C '
1
 .
VABCA ' B 'C ' 7
a2 3
.
48
2a  b
a
Câu 50: Cho các số thực dương a , b thỏa mãn log16 a  log 20 b  log 25
. Đặt T  . Khẳng định
3
b
nào sau đây đúng?
1
1
2
A. 0  T  .
B.  T  .
C. 1  T  2 .
D. 2  T  0 .
2
3
2

A. S A ' B 'C ' 

a2 3
.
16

B. S A ' B 'C ' 

a2 3
.
4

C. S A ' B 'C ' 

a2 3
.
8

D. S A ' B 'C ' 

-----------------------------------------------

----------- HẾT -----------

Trang 6/25 - Mã đề thi 169

TRƯỜNG THPT CHUYÊN
NGUYỄN HUỆ

ĐỀ THI HỌC KÌ I LỚP 12 NĂM HỌC 2019 - 2020
Môn: Toán
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Mã đề thi 245

(Thí sinh không được sử dụng tài liệu)
Họ và tên thí sinh: ................................................................................ SBD: ..................

Câu 1: Cho hàm số y  log 2 x 2 . Khẳng định nào sau đây sai?
A. Đồ thị hàm số có một tiệm cận đứng.
C. Hàm số đồng biến trên  0;  .

B. Đồ thị hàm số có một tiệm cận ngang.
D. Hàm số nghịch biến trên  ;0  .

1
Câu 2: Cho log 1    a . Khẳng định nào sau đây đúng?
2 5
2
A. log 5 4   .
B. log 2 5  a .
a
1
1
5a
C. log 2  log 2
D. log 2 25  log 2 5 
.
 3a .
5
25
2
Câu 3: Tính thể tích của khối lập phương ABCDA ' B ' C ' D ' , biết AC '  a 6 .
A. 2a3 .
B. 6a3 .
C. a3 .
D. 2a 3 2 .
Câu 4: Hàm số y   x 2  3 x  3 e x có đạo hàm là
A.  x 2  x  e x .

B. 3xe x .

D.  2 x  3 e x .

C. x 2e x .

Câu 5: Cho hàm số y  f ( x) xác định, liên tục trên  và có bảng biến thiên
x

2
0
2


0

0

0

y
y

1

3

3

Khẳng định nào sau đây đúng?
A. Hàm số có đúng một cực trị.

B. Phương trình f  x   0 có 2 nghiệm.

C. Hàm số có giá trị nhỏ nhất bằng  3 .
D. Hàm số có giá trị lớn nhất bằng 1.
Câu 6: Cho hàm số y  f ( x) có đồ thị là đường cong trong hình dưới đây.

Tìm số nghiệm thực của phương trình f ( x)  1 .
y
2

1
O

A. 2 .

B. 3 .

C. 1.

x

D. 0 .
Trang 7/25 - Mã đề thi 169

Câu 7: Hàm số y  f  x  có đạo hàm là f '( x)  x 2 ( x  1)3 (2  3 x) . Số điểm cực trị của hàm số f  x  là
C. 3.
B. 2 .
Câu 8: Hàm số y  f ( x) có bảng biến thiên như sau:
A. 0.

D. 1.

Khẳng định nào sau đây là đúng?
A. Hàm số nghịch biến trên  .

B. Hàm số nghịch biến trên  \ 2 .

C. Hàm số nghịch biến trên  ;2  ;  2;   .

D. Hàm số đồng biến trên  ;2  ;  2;   .

Câu 9: Điểm cực đại của đồ thị hàm số y  x3  3x 2  2 là
A.  2; 18  .

B.  2;0  .

C. (2;6) .

Câu 10: Với a, b là hai số thực dương và a  1 , log
A.

1
 log a b .
2

B. 2  2log a b .

B. D   .

 a b  bằng

C. 2  log a b .

Câu 11: Tập xác định D của hàm số y   x  2 
A. D   \  2 .

a

2

D.  0;2  .

D.

1 1
 log a b .
2 2


C. D   ;2  .

D. D   2;   .

Câu 12: Trong các hàm số sau, hàm số nào đồng biến trên  ?
A. y  x3  4 x  5.

B. y  x 4  2 x 2  3.

C. y  x 2  x  1.

D. y 

x 1
.
2x  3

Câu 13: Cho hình chữ nhật ABCD có AB  2 AD. Quay hình chữ nhật đã cho quanh AD và AB ta
được hai hình trụ tròn xoay có thể tích lần lượt là V1 , V2 . Khẳng định nào dưới đây đúng?
A. V1  2V2 .

B. V2  4V1.

Câu 14: Thể tích khối cầu có bán kính 6cm là
A. 432  cm3  .
B. 864  cm3  .

C. V1  4V2 .

D. V2  2V1.

C. 216  cm3  .

D. 288  cm3  .

Câu 15: Cho khối nón có độ dài đường sinh bằng a 5 và chiều cao bằng a. Thể tích của khối nón đã
cho bằng
4 a 3
2 a 3
4 5 a 3
3
.
.
A. 2 a .
B.
C.
D.
.
3
3
3
Câu 16: Khoảng đồng biến của hàm số y  2 x  x 2 là
A. 1;   .

B.   ;1 .

C.  0; 1 .

D. 1; 2  .

Câu 17: Tập xác định D của hàm số y  log3  log 2 x  là
A. D   0;   .

B. D  1;   .

C. D   0;1 .

D. D   .

Câu 18: Một hình đa diện có các mặt là các tam giác. Gọi M và C lần lượt là số mặt và số cạnh của
hình đa diện đó. Khẳng định nào sau đây đúng?
A. C  M  2 .
B. 3M  2C .
C. M  C .
D. 3C  2 M .
Câu 19: Tiệm cận đứng của đồ thị hàm số y 
A. x  1 .

B. y  1 .

x 1
là đường thẳng có phương trình
x 1
C. y  1 .
D. x  1 .
Trang 8/25 - Mã đề thi 169

Câu 20: Cho hình chóp S . ABCD có đáy là hình chữ nhật. SA  ( ABCD), AB  a, AD  2a , góc giữa
0
SC và mặt đáy là 45 . Tính thể tích của khối chóp S . ABCD .

A. V 

2a 3 5
.
2

B. V 

a3 5
.
3

C. V 

2a 3 5
.
15

D. V 

2a 3 5
.
3

Câu 21: Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3 . Cắt hình nón đã cho bởi mặt phẳng
đi qua đỉnh và cách tâm của đáy một khoảng bằng 2 , ta được thiết diện có diện tích bằng
A. 20.

B. 10.

C.

16 11
.
3

D.

8 11
.
3

3

Câu 22: Số điểm cực trị của hàm số y  x  4 x 2  3 là
A. 4.

B. 2.

C. 3.

D. 0.

Câu 23: Cho hình chóp S . ABCD có đáy là hình vuông cạnh a . Cạnh bên SA  a 6 và vuông góc với

đáy  ABCD  . Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S . ABCD .
A. 8 a 2 .

B. 2 a 2 .

D. 2a 2 .

C. a 2 2 .

Câu 24: Cho hình chóp S . ABCD có đáy là hình thang cân với AB / /CD, AB  2a, AD  CD  a . Hình

chiếu vuông góc của S xuống mặt đáy là trung điểm của AC . Biết góc giữa SC và  ABCD  là 450 , tính
thể tích của khối chóp S . ABCD .
9a 3
.
A.
8

a3 6
B.
.
8

3a3
.
D.
8

a3 6
C.
.
6

Câu 25: Gọi S là tập hợp các giá trị của tham số m để phương trình 9x  2m.3x  m2  8m  0 có 2
nghiệm phân biệt x1 , x2 thỏa mãn x1  x2  2 . Tính tổng các phần tử của S .
A. 9.

B. 8.

C. 1.

D.

9
.
2

Câu 26: Hàm số f  x   log  x 2019  2020 x  có đạo hàm là
A. f   x  
C. f   x  

x

2019

 2020 x  ln10

2019 x 2018  2020

 2019 x

2018

B. f   x  

.

 2020  loge

x 2019  2020 x

.

D. f   x  

x 2019  2020 x
.
 2019 x2018  2020 ln 2018

 2019 x

2018

 2020  ln10

x 2019  2020 x

.

Câu 27: Tìm tất cả các giá trị thực của m để đường thẳng d : y  mx  2 cắt đồ thị  C  : y 

x 1
tại hai
x

điểm thuộc hai nhánh của đồ thị  C  .
A. m  0.

B. m  0.

C. m  1.

1
D. m  .
2

Câu 28: Một doanh nghiệp sản xuất và bán một loại sản phẩm với giá 45 (ngàn đồng) mỗi sản phẩm, tại
giá bán này khách hàng sẽ mua 60 sản phẩm mỗi tháng. Doanh nghiệp dự định tăng giá bán và họ ước
tính rằng nếu tăng 2 (ngàn đồng) trong giá bán thì mỗi tháng sẽ bán ít hơn 6 sản phẩm. Biết rằng chi phí
sản xuất mỗi sản phẩm là 27 (ngàn đồng). Hỏi doanh nghiệp nên bán sản phẩm với giá nào để lợi nhuận
thu được là lớn nhất ?
A. 47 ngàn đồng.
B. 46 ngàn đồng.
C. 48 ngàn đồng.
D. 49 ngàn đồng.

Trang 9/25 - Mã đề thi 169

Câu 29: Cho các hàm số y  a x và y  b x với a, b là những số thực dương khác 1 có đồ thị như hình vẽ.

Đường thẳng y  3 cắt trục tung, đồ thị hàm số y  a x và y  b x lần lượt tại H , M , N . Biết rằng
2 HM  3MN , khẳng định nào sau đây đúng?

.
A. a  b .
5

3

B. a  b .
2

3

C. 3a  5b .

D. a3  b5 .

Câu 30: Cho hình hộp chữ nhật ABCD. ABC D có AB  a , AD  2 a , AA  3a . Thể tích khối nón có
đỉnh trùng với tâm của hình chữ nhật ABCD , đường tròn đáy ngoại tiếp hình chữ nhật AB C D  là
15 a3
5 a3
A.
.
B.
.
C. 15 a 3 .
D. 5 a3 .
4
4
Câu 31: Biết log 2 x  6 log 4 a  4 log 2 b  log 1 c với a, b, c là các số thực dương bất kì. Khẳng định nào
2

sau đây đúng?
a3
ac 3
a 3c
x
x
.
C.

.
D.

.
b 2c
b2
b2
Câu 32: Cho hàm số y  ax 3  bx 2  cx  d có đồ thị là đường cong trong hình dưới đây. Khẳng định nào
A. x  a3  b2  c .

B. x 

sau đây đúng?
y

O

A. a  0 , c  0 , d  0 .
C. a  0 , c  0 , d  0 .

x

B. a  0 , c  0 , d  0 .
D. a  0 , c  0 , d  0 .

Câu 33: Cho khối chóp đều S . ABCD có cạnh đáy là 2a , cạnh bên là 3a . Tính thể tích của khối chóp
S . ABCD .
A.

4a 3 7
.
3

B.

a3 7
.
3

C.

2a 3 17
.
3

D.

2a 3 34
.
3

Câu 34: Một chất điểm chuyển động theo quy luật S  6t 2  t 3. Vận tốc v (m/s) của chuyển động đạt giá
trị lớn nhất tại thời điểm t (s) bằng
A. 6 (s).
B. 4 (s).
C. 12 (s).
D. 2 (s).

  1200 . Góc giữa
Câu 35: Cho lăng trụ đứng ABC . A ' B ' C ' có đáy là ABC với AB  2a, AC  a, BAC

 A ' BC  và  ABC  là 450 . Tính thể tích của khối lăng trụ
A.

a3 7
.
7

B.

a3 7
.
14

C.

ABC . A ' B ' C ' .

3a 3 7
.
14

D.

3a 3 7
.
7

Trang 10/25 - Mã đề thi 169

Câu 36: Tìm m để hàm số f ( x)  (m  2)
A. m  2.

B. m  2.

x3
 (m  2) x 2  (m  8) x  m 2  1 nghịch biến trên .
3
C. m  .

D. m  2.

Câu 37: Cho hình đa diện đều loại 4;3 cạnh là 2a . Gọi S là tổng diện tích của tất cả các mặt của hình

đa diện đó. Khi đó:
B. S  6a 2 .

A. S  a 2 3 .

C. S  4a 2 .

D. S  24a 2 .

Câu 38: Tìm tất cả các giá trị của tham số m để hàm số y  x3  3mx 2  6mx  m có hai điểm cực trị.
A. m   0;8  .

B. m   0;2  .

C. m   ;0    8;   .

D. m   ;0    2;   .

Câu 39: Cho tứ diện ABCD có ABC là tam giác đều cạnh bằng a . BCD vuông cân tại D và nằm

trong mặt phẳng vuông góc với  ABC  . Tính theo a thể tích của tứ diện ABCD .
3a3
.
A.
8

a3 3
B.
.
8

3a3
.
C.
24

a3 3
D.
.
24

Câu 40: Tổng độ dài l tất cả các cạnh của khối mười hai mặt đều có cạnh bằng 2 là
A. l  60 .
B. l  16 .
C. l  24 .
D. l  8 .
Câu 41: Cho lăng trụ xiên ABC . A ' B ' C ' có đáy ABC đều cạnh a . Góc giữa cạnh bên và mặt đáy là 600
và A ' A  A ' B  A ' C . Tính thể tích của khối lăng trụ.
A. V 

a3 3
.
12

B. V 

a3 3
.
4

C. V 

a3 3
.
2

D. V 

3a 3 3
.
8

Câu 42: Cho hình trụ có hai đáy là hình tròn  O  và  O  . Trên hai đường tròn đáy lấy hai điểm A, B

sao cho góc giữa AB và mặt phẳng chứa đường tròn đáy bằng 45o và khoảng cách giữa hai đường thẳng
AB với OO bằng
A. V 

 a3 2

B. V   a 3 2.

C. V 

 a3 2

.

D. V 

 a3 2

.
2
3
6
Câu 43: Cho hàm số bậc ba y  f ( x) có đồ thị là đường cong hình bên. Đồ thị hàm số

g ( x) 

.

a 2
. Biết bán kính đáy bằng a, thể tích của khối trụ là
2

( x 2  3x  2) x  1
có tất cả bao nhiêu đường tiệm cận đứng ?
x[ f 2 ( x)  f ( x)]

A. 3.

B. 4.

C. 5.

D. 2.

1 
a 1

Câu 44: Cho hàm số f ( x)  ln 1  2  . Biết rằng f '(2)  f '(3)  ...  f '(2019) 
là phân số tối
b
 x 
giản với a, b là các số nguyên dương. Khẳng định nào sau đây đúng?
A. a  b .
B. 2a  b .
C. a  2b .
D. a  b .
Trang 11/25 - Mã đề thi 169

Câu 45: Một chiếc hộp hình trụ với bán kính đáy bằng chiều cao và bằng 10cm. Một học sinh bỏ một

miếng bìa hình vuông vào chiếc hộp đó và thấy hai cạnh đối diện của miếng bìa lần lượt là các dây cung
của hai đường tròn đáy hộp và miếng bìa không song song với trục của hộp. Hỏi diện tích của miếng bìa
đó bằng bao nhiêu?

A. 250cm2 .

B. 150cm2 .

C. 300cm2 .

D. 200cm2 .

Câu 46: Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số f ( x) 

x 2  mx  m
trên
x 1

đoạn 1;2 bằng 2 ?
A. 4.

B. 3.

C. 1.

D. 2.

Câu 47: Cho các số thực dương a , b thỏa mãn log16 a  log 20 b  log 25

nào sau đây đúng?
1
A. 0  T  .
2

B.

1
2
T  .
2
3

C. 1  T  2 .

2a  b
a
. Đặt T  . Khẳng định
3
b

D. 2  T  0 .

Câu 48: Cho hàm số f  x  có đạo hàm trên  và có đồ thị hàm y  f   x  như hình vẽ. Xét hàm số
g  x   f  x 2  2  . Khẳng định nào dưới đây sai?

A. Hàm số g  x  nghịch biến trên  1; 0  .

B. Hàm số g  x  nghịch biến trên  0; 2  .

C. Hàm số g  x  nghịch biến trên  ; 2  .

D. Hàm số g  x  đồng biến trên  2;   .

Câu 49: Một bác nông dân cần xây một hố ga không có nắp dạng hình hộp chữ nhật có thể tích
25600(cm3 ) , tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Tính diện tích của đáy hố ga để
khi xây hố ga tiết kiệm nguyên vật liệu nhất.
A. 6400(cm 2 ) .
B. 160(cm 2 ) .
C. 1600(cm 2 ) .
D. 640(cm 2 ) .
Câu 50: Cho hình chóp đều S . ABC có tất cả các cạnh đều bằng a . Mặt phẳng  P  song song với mặt

phẳng  ABC  và cắt các cạnh SA, SB, SC lần lượt tại A ', B ', C ' . Tính diện tích của tam giác A ' B ' C ' biết
VSA ' B 'C '
1
 .
VABCA ' B 'C ' 7

A. S A ' B 'C ' 

a2 3
.
16

B. S A ' B 'C ' 

a2 3
.
4

C. S A ' B 'C ' 

a2 3
.
8

D. S A ' B 'C ' 

a2 3
.
48

-----------------------------------------------

----------- HẾT ----------Trang 12/25 - Mã đề thi 169

TRƯỜNG THPT CHUYÊN
NGUYỄN HUỆ

ĐỀ THI HỌC KÌ I LỚP 12 NĂM HỌC 2019 - 2020
Môn: Toán
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Mã đề thi 326

(Thí sinh không được sử dụng tài liệu)
Họ và tên thí sinh: ................................................................................ SBD: ..................

Câu 1: Với a, b là hai số thực dương và a  1 , log

a

 a b  bằng

1 1
C. 2  log a b .
 log a b .
2 2
Câu 2: Hàm số y  f ( x) có bảng biến thiên như sau:

A. 2  2log a b .

B.

D.

1
 log a b .
2

Khẳng định nào sau đây là đúng?
A. Hàm số nghịch biến trên  .

B. Hàm số nghịch biến trên  \ 2 .

C. Hàm số nghịch biến trên  ;2  ;  2;   .

D. Hàm số đồng biến trên  ;2  ;  2;   .

Câu 3: Một hình đa diện có các mặt là các tam giác. Gọi M và C lần lượt là số mặt và số cạnh của hình
đa diện đó. Khẳng định nào sau đây đúng?
A. C  M  2 .
B. M  C .
C. 3C  2 M .
D. 3M  2C .
Câu 4: Điểm cực đại của đồ thị hàm số y  x3  3x 2  2 là
A.  2; 18  .

B.  2;0  .

D.  0;2  .

C. (2;6) .

Câu 5: Hàm số y  f  x  có đạo hàm là f '( x)  x 2 ( x  1)3 (2  3x) . Số điểm cực trị của hàm số f  x  là
C. 3.
D. 1.
B. 2 .
Câu 6: Cho hàm số y  f ( x) xác định, liên tục trên  và có bảng biến thiên
A. 0.

x
y
y




2
0





0
0
1

3



2
0





3

Khẳng định nào sau đây đúng?
A. Phương trình f  x   0 có 2 nghiệm.

B. Hàm số có giá trị nhỏ nhất bằng  3 .

C. Hàm số có đúng một cực trị.

D. Hàm số có giá trị lớn nhất bằng 1.

Câu 7: Trong các hàm số sau, hàm số nào đồng biến trên  ?
A. y  x3  4 x  5.

B. y  x 4  2 x 2  3.

C. y  x 2  x  1.

D. y 

x 1
2 x  3.

Trang 13/25 - Mã đề thi 169

Câu 8: Cho hàm số y  log 2 x 2 . Khẳng định nào sau đây sai?
A. Đồ thị hàm số có một tiệm cận ngang.

B. Hàm số nghịch biến trên  ;0  .

C. Đồ thị hàm số có một tiệm cận đứng.

D. Hàm số đồng biến trên  0;  .

Câu 9: Khoảng đồng biến của hàm số y  2 x  x 2 là
A. 1;   .

B.   ;1 .

Câu 10: Thể tích khối cầu có bán kính 6cm là
A. 432  cm3  .
B. 864  cm3  .

C.  0; 1 .

D. 1; 2  .

C. 216  cm3  .

D. 288  cm3  .

Câu 11: Cho hình chóp S . ABCD có đáy là hình chữ nhật. SA  ( ABCD), AB  a, AD  2a , góc giữa
0

SC và mặt đáy là 45 . Tính thể tích của khối chóp S . ABCD .
2a 3 5
a3 5
2a 3 5
A. V 
.
B. V 
.
C. V 
.
2
3
15

D. V 

2a 3 5
.
3

Câu 12: Cho hình chữ nhật ABCD có AB  2 AD. Quay hình chữ nhật đã cho quanh AD và AB ta
được hai hình trụ tròn xoay có thể tích lần lượt là V1 , V2 . Khẳng định nào dưới đây đúng?
A. V1  4V2 .

B. V1  2V2 .

C. V2  4V1.

Câu 13: Tập xác định D của hàm số y   x  2 
A. D   \  2 .

2

B. D   ;2  .

D. V2  2V1.


C. D   2;   .

D. D   .

1
Câu 14: Cho log 1    a . Khẳng định nào sau đây đúng?
2 5
A. log 2 5  a .

2
B. log 5 4   .
a

1
1
C. log 2  log 2
 3a .
5
25

D. log 2 25  log 2 5 

5a
.
2

Câu 15: Tập xác định D của hàm số y  log3  log 2 x  là
A. D   0;   .

B. D  1;   .

C. D   0;1 .

D. D   .

Câu 16: Cho hàm số y  f ( x) có đồ thị là đường cong trong hình dưới đây.

Tìm số nghiệm thực của phương trình f ( x)  1 .
y
2

1
O

A. 1.

B. 2.

Câu 17: Tiệm cận đứng của đồ thị hàm số y 
A. x  1 .

B. y  1 .

C. 0.

x

D. 3.

x 1
là đường thẳng có phương trình
x 1
C. y  1 .
D. x  1 .

Câu 18: Tính thể tích của khối lập phương ABCDA ' B ' C ' D ' , biết AC '  a 6 .
A. 6a3 .

B. a3 .

C. 2a3 .

D. 2a 3 2 .
Trang 14/25 - Mã đề thi 169

Câu 19: Cho khối nón có độ dài đường sinh bằng a 5 và chiều cao bằng a. Thể tích của khối nón đã
cho bằng
4 a 3
2 a 3
4 5 a 3
.
.
A. 2 a3.
B.
C.
D.
.
3
3
3
Câu 20: Hàm số y   x 2  3 x  3 e x có đạo hàm là
A.  x 2  x  e x .

B. 3xe x .

D.  2 x  3 e x .

C. x 2e x .

Câu 21: Biết log 2 x  6 log 4 a  4 log 2 b  log 1 c với a, b, c là các số thực dương bất kì. Khẳng định nào
2

sau đây đúng?
a3
A. x  2 .
bc

B. x  a3  b2  c .

C. x 

ac 3
.
b2

D. x 

a 3c
.
b2

Câu 22: Cho tứ diện ABCD có ABC là tam giác đều cạnh bằng a . BCD vuông cân tại D và nằm
trong mặt phẳng vuông góc với  ABC  . Tính theo a thể tích của tứ diện ABCD .
a3 3
A.
.
8

3a3
.
C.
8

a3 3
B.
.
24

Câu 23: Hàm số f  x   log  x 2019  2020 x  có đạo hàm là

x 2019  2020 x
A. f   x  
.
 2019 x2018  2020 ln 2018
C. f   x  

 2019 x
x

2018

2019

 2020  ln10

 2020 x

B. f   x 

3a3
.
D.
24

 2019 x


D. f   x  

.

x

x

2019

2018

2019

 2020  loge

 2020 x

 2020 x  ln10

2019 x 2018  2020

.

.

Câu 24: Một chất điểm chuyển động theo quy luật S  6t 2  t 3. Vận tốc v (m/s) của chuyển động đạt giá
trị lớn nhất tại thời điểm t (s) bằng
A. 6 (s).
B. 4 (s).
C. 12 (s).
D. 2 (s).
Câu 25: Một doanh nghiệp sản xuất và bán một loại sản phẩm với giá 45 (ngàn đồng) mỗi sản phẩm, tại
giá bán này khách hàng sẽ mua 60 sản phẩm mỗi tháng. Doanh nghiệp dự định tăng giá bán và họ ước
tính rằng nếu tăng 2 (ngàn đồng) trong giá bán thì mỗi tháng sẽ bán ít hơn 6 sản phẩm. Biết rằng chi phí
sản xuất mỗi sản phẩm là 27 (ngàn đồng). Hỏi doanh nghiệp nên bán sản phẩm với giá nào để lợi nhuận
thu được là lớn nhất ?
A. 47 ngàn đồng.
B. 46 ngàn đồng.
C. 48 ngàn đồng.
D. 49 ngàn đồng.
x 1
Câu 26: Tìm tất cả các giá trị thực của m để đường thẳng d : y  mx  2 cắt đồ thị  C  : y 
tại hai
x
điểm thuộc hai nhánh của đồ thị  C  .
A. m  0. .

B. m  0. .

C. m  1. .

1
D. m  . .
2

3

Câu 27: Số điểm cực trị của hàm số y  x  4 x 2  3 là
A. 3.

B. 2.

C. 0.

D. 4.

Câu 28: Cho khối chóp đều S . ABCD có cạnh đáy là 2a , cạnh bên là 3a . Tính thể tích của khối chóp
S . ABCD .
4a 3 7
a3 7
2a 3 17
2a 3 34
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 29: Cho hình hộp chữ nhật ABCD. ABC D có AB  a , AD  2 a , AA  3a . Thể tích khối nón có
đỉnh trùng với tâm của hình chữ nhật ABCD , đường tròn đáy ngoại tiếp hình chữ nhật AB C D  là
15 a3
5 a3
A. 5 a3 .
B.
.
C.
.
D. 15 a 3 .
4
4
Trang 15/25 - Mã đề thi 169

x3
 (m  2) x 2  (m  8) x  m 2  1 nghịch biến trên .
3
A. m  2. .
B. m  2. .
C. m  2. .
D. m  . .
3
2
Câu 31: Cho hàm số y  ax  bx  cx  d có đồ thị là đường cong trong hình dưới đây. Khẳng định nào
sau đây đúng?
Câu 30: Tìm m để hàm số f ( x)  (m  2)

y

O

A. a  0 , c  0 , d  0 .
C. a  0 , c  0 , d  0 .

x

B. a  0 , c  0 , d  0 .
D. a  0 , c  0 , d  0 .

Câu 32: Tổng độ dài l tất cả các cạnh của khối mười hai mặt đều có cạnh bằng 2 là
A. l  8 .
B. l  16 .
C. l  60 .
D. l  24 .
Câu 33: Cho hình chóp S . ABCD có đáy là hình vuông cạnh a . Cạnh bên SA  a 6 và vuông góc với
đáy  ABCD  . Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S . ABCD .
A. 2 a 2 .

B. a 2 2 .

C. 8 a 2 .

D. 2a 2 .

  1200 . Góc giữa
Câu 34: Cho lăng trụ đứng ABC . A ' B ' C ' có đáy là ABC với AB  2a, AC  a, BAC

 A ' BC  và  ABC  là 450 . Tính thể tích của khối lăng trụ
A.

a3 7
.
7

B.

3a 3 7
.
14

C.

ABC . A ' B ' C ' .

a3 7
.
14

D.

3a 3 7
.
7

Câu 35: Tìm tất cả các giá trị của tham số m để hàm số y  x3  3mx 2  6mx  m có hai điểm cực trị.
A. m   0;8  .

B. m   0;2  .

C. m   ;0    8;   .

D. m   ;0    2;   .

Câu 36: Gọi S là tập hợp các giá trị của tham số m để phương trình 9x  2m.3x  m2  8m  0 có 2
nghiệm phân biệt x1 , x2 thỏa mãn x1  x2  2 . Tính tổng các phần tử của S .
9
.
D. 9.
2
Câu 37: Cho các hàm số y  a x và y  b x với a, b là những số thực dương khác 1 có đồ thị như hình vẽ.

A. 1.

B. 8.

C.

Đường thẳng y  3 cắt trục tung, đồ thị hàm số y  a x và y  b x lần lượt tại H , M , N . Biết rằng
2 HM  3MN , khẳng định nào sau đây đúng?

A. a3  b5 .

B. a 2  b3 .

C. 3a  5b .

D. a5  b3 .
Trang 16/25 - Mã đề thi 169

Câu 38: Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3 . Cắt hình nón đã cho bởi mặt phẳng
đi qua đỉnh và cách tâm của đáy một khoảng bằng 2 , ta được thiết diện có diện tích bằng
8 11
16 11
A. 20.
B.
.
C. 10.
D.
.
3
3
Câu 39: Cho hình đa diện đều loại 4;3 cạnh là 2a . Gọi S là tổng diện tích của tất cả các mặt của hình

đa diện đó. Khi đó:
A. S  a 2 3 .

B. S  6a 2 .

C. S  4a 2 .

D. S  24a 2 .

Câu 40: Cho hình chóp S . ABCD có đáy là hình thang cân với AB / /CD, AB  2a, AD  CD  a . Hình

chiếu vuông góc của S xuống mặt đáy là trung điểm của AC . Biết góc giữa SC và  ABCD  là 450 , tính
thể tích của khối chóp S . ABCD .
9a 3
3a3
a3 6
a3 6
.
.
A.
B.
C.
.
D.
.
8
8
8
6
Câu 41: Cho lăng trụ xiên ABC . A ' B ' C ' có đáy ABC đều cạnh a . Góc giữa cạnh bên và mặt đáy là 600
và A ' A  A ' B  A ' C . Tính thể tích của khối lăng trụ.
a3 3
a3 3
a3 3
3a 3 3
A. V 
.
B. V 
.
C. V 
.
D. V 
.
8
4
2
12
Câu 42: Cho hàm số bậc ba y  f ( x) có đồ thị là đường cong hình bên. Đồ thị hàm số

( x 2  3x  2) x  1
g ( x) 
có tất cả bao nhiêu đường tiệm cận đứng ?
x[ f 2 ( x)  f ( x)]

A. 4.

B. 5.

C. 3.

D. 2.

Câu 43: Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số f ( x) 

x 2  mx  m
trên
x 1

đoạn 1;2 bằng 2 ?
A. 1.

B. 4.

C. 2.

D. 3.

a 1
1 

Câu 44: Cho hàm số f ( x)  ln 1  2  . Biết rằng f '(2)  f '(3)  ...  f '(2019) 
là phân số tối
b
 x 
giản với a, b là các số nguyên dương. Khẳng định nào sau đây đúng?
A. 2a  b .
B. a  2b .
C. a  b .
D. a  b .

Câu 45: Cho hình trụ có hai đáy là hình tròn  O  và  O  . Trên hai đường tròn đáy lấy hai điểm A, B

sao cho góc giữa AB và mặt phẳng chứa đường tròn đáy bằng 45o và khoảng cách giữa hai đường thẳng
a 2
AB với OO bằng
. Biết bán kính đáy bằng a, thể tích của khối trụ là
2
 a3 2
 a3 2
 a3 2
A. V   a 3 2.
B. V 
C. V 
D. V 
.
.
.
2
6
3
Câu 46: Cho các số thực dương a , b thỏa mãn log16 a  log 20 b  log 25

2a  b
a
. Đặt T  . Khẳng định
3
b

nào sau đây đúng?
Trang 17/25 - Mã đề thi 169

A. 2  T  0 .

B. 0  T 

1
.
2

C.

1
2
T  .
2
3

D. 1  T  2 .

Câu 47: Cho hàm số f  x  có đạo hàm trên  và có đồ thị hàm y  f   x  như hình vẽ. Xét hàm số
g  x   f  x 2  2  . Khẳng định nào dưới đây sai?

A. Hàm số g  x  nghịch biến trên  1; 0  .

B. Hàm số g  x  nghịch biến trên  0; 2  .

C. Hàm số g  x  nghịch biến trên  ; 2  .

D. Hàm số g  x  đồng biến trên  2;   .

Câu 48: Cho hình chóp đều S . ABC có tất cả các cạnh đều bằng a . Mặt phẳng  P  song song với mặt

phẳng  ABC  và cắt các cạnh SA, SB, SC lần lượt tại A ', B ', C ' . Tính diện tích của tam giác A ' B ' C ' biết
VSA ' B 'C '
1
 .
VABCA ' B 'C ' 7
a2 3
a2 3
a2 3
a2 3
.
B. S A ' B 'C ' 
.
C. S A ' B 'C ' 
.
D. S A ' B 'C ' 
.
16
4
8
48
Câu 49: Một chiếc hộp hình trụ với bán kính đáy bằng chiều cao và bằng 10cm. Một học sinh bỏ một
miếng bìa hình vuông vào chiếc hộp đó và thấy hai cạnh đối diện của miếng bìa lần lượt là các dây cung
của hai đường tròn đáy hộp và miếng bìa không song song với trục của hộp. Hỏi diện tích của miếng bìa
đó bằng bao nhiêu?

A. S A ' B 'C ' 

A. 300cm2 .

B. 200cm2 .

C. 250cm2 .

D. 150cm2 .

Câu 50: Một bác nông dân cần xây một hố ga không có nắp dạng hình hộp chữ nhật có thể tích
25600(cm3 ) , tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Tính diện tích của đáy hố ga để
khi xây hố ga tiết kiệm nguyên vật liệu nhất.
A. 6400(cm 2 ) .
B. 160(cm 2 ) .
C. 1600(cm 2 ) .
D. 640(cm 2 ) .
-----------------------------------------------

----------- HẾT -----------

Trang 18/25 - Mã đề thi 169

TRƯỜNG THPT CHUYÊN
NGUYỄN HUỆ

ĐỀ THI HỌC KÌ I LỚP 12 NĂM HỌC 2019 - 2020
Môn: Toán
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Mã đề thi 493

(Thí sinh không được sử dụng tài liệu)
Họ và tên thí sinh: ................................................................................ SBD: ..................
Câu 1: Tính thể tích của khối lập phương ABCDA ' B ' C ' D ' , biết AC '  a 6 .
A. 6a 3 .
B. a 3 .
C. 2a 3 .
D. 2a 3 2 .
Câu 2: Hàm số y  f  x  có đạo hàm là f '( x)  x 2 ( x  1)3 (2  3x) . Số điểm cực trị của hàm số f  x  là
A. 1.
B. 2.
C. 0.
D. 3.
Câu 3: Một hình đa diện có các mặt là các tam giác. Gọi M và C lần lượt là số mặt và số cạnh của hình
đa diện đó. Khẳng định nào sau đây đúng?
A. 3C  2 M .
B. M  C .
C. 3M  2C .
D. C  M  2 .
Câu 4: Trong các hàm số sau, hàm số nào đồng biến trên  ?
x 1
A. y  x3  4 x  5.
B. y  x 4  2 x 2  3.
C. y  x 2  x  1.
D. y 
.
2x  3
Câu 5: Cho hàm số y  f ( x) xác định, liên tục trên  và có bảng biến thiên
x
y
y




2
0





0
0
1

3

2
0







3

Khẳng định nào sau đây đúng?
A. Phương trình f  x   0 có 2 nghiệm.

B. Hàm số có giá trị nhỏ nhất bằng  3 .

C. Hàm số có đúng một cực trị.

D. Hàm số có giá trị lớn nhất bằng 1.

1
Câu 6: Cho log 1    a . Khẳng định nào sau đây đúng?
2 5
1
1
2
A. log 2  log 2
B. log 5 4   .
 3a .
5
25
a
5a
C. log 2 25  log 2 5 
.
D. log 2 5  a .
2
Câu 7: Cho hàm số y  log 2 x 2 . Khẳng định nào sau đây sai?
A. Đồ thị hàm số có một tiệm cận ngang.

B. Hàm số nghịch biến trên  ;0  .

C. Đồ thị hàm số có một tiệm cận đứng.

D. Hàm số đồng biến trên  0;  .

Câu 8: Cho khối nón có độ dài đường sinh bằng a 5 và chiều cao bằng a. Thể tích của khối nón đã cho
bằng
2 a 3
4 a 3
4 5 a 3
A. 2 a3.
B.
C.
D.
.
.
.
3
3
3
Trang 19/25 - Mã đề thi 169

Câu 9: Thể tích khối cầu có bán kính 6cm là
A. 432  cm3  .
B. 864  cm3  .

C. 216  cm3  .

D. 288  cm3  .

Câu 10: Tập xác định D của hàm số y  log3  log 2 x  là
A. D   0;1 .

B. D  1;   .

C. D   0;   .

D. D   .

Câu 11: Cho hình chóp S . ABCD có đáy là hình chữ nhật. SA  ( ABCD), AB  a, AD  2a , góc giữa
SC và mặt đáy là 450 . Tính thể tích của khối chóp S . ABCD .
2a 3 5
2a 3 5
2a 3 5
a3 5
A. V 
.
B. V 
.
C. V 
.
D. V 
.
2
3
15
3
Câu 12: Tập xác định D của hàm số y   x  2 
A. D   \  2 .

2

B. D   ;2  .


C. D   2;   .

D. D   .

Câu 13: Cho hàm số y  f ( x) có đồ thị là đường cong trong hình dưới đây.

Tìm số nghiệm thực của phương trình f ( x)  1 .
y
2

1
O

A. 1.

B. 2.

x

C. 0.

D. 3.

x 1
là đường thẳng có phương trình
x 1
A. x  1 .
B. y  1 .
C. y  1 .
D. x  1 .
Câu 15: Hàm số y  f ( x) có bảng biến thiên như sau:

Câu 14: Tiệm cận đứng của đồ thị hàm số y 

Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên  ;2  ;  2;   .

B. Hàm số nghịch biến trên  \ 2 .

C. Hàm số nghịch biến trên  ;2  ;  2;   .

D. Hàm số nghịch biến trên  .

Câu 16: Điểm cực đại của đồ thị hàm số y  x 3  3 x 2  2 là
A.  2; 18  .

B.  0;2  .

C. (2;6) .

Câu 17: Với a, b là hai số thực dương và a  1 , log
A. 2  2log a b .

B. 2  log a b .

a

C.

Câu 18: Hàm số y   x 2  3 x  3 e x có đạo hàm là
A.  x 2  x  e x .

B. 3xe x .

D.  2;0  .

 a b  bằng
1
 log a b .
2

C. x 2e x .

D.

1 1
 log a b .
2 2

D.  2 x  3 e x .

Câu 19: Khoảng đồng biến của hàm số y  2 x  x 2 là
A.  0; 1 .

B.   ;1 .

C. 1; 2  .

D. 1;   .
Trang 20/25 - Mã đề thi 169

Câu 20: Cho hình chữ nhật ABCD có AB  2 AD. Quay hình chữ nhật đã cho quanh AD và AB ta
được hai hình trụ tròn xoay có thể tích lần lượt là V1 , V2 . Khẳng định nào dưới đây đúng?
A. V1  4V2 .

B. V1  2V2 .

C. V2  4V1.

D. V2  2V1.

Câu 21: Gọi S là tập hợp các giá trị của tham số m để phương trình 9x  2m.3x  m2  8m  0 có 2
nghiệm phân biệt x1 , x2 thỏa mãn x1  x2  2 . Tính tổng các phần tử của S .
A. 1.

B. 8.

C.

9
.
2

D. 9.

Câu 22: Tìm tất cả các giá trị thực của m để đường thẳng d : y  mx  2 cắt đồ thị  C  : y 

x 1
tại hai
x

điểm thuộc hai nhánh của đồ thị  C  .
1
A. m  .
2

B. m  0.

C. m  0.

D. m  1.

Câu 23: Cho hình đa diện đều loại 4;3 cạnh là 2a . Gọi S là tổng diện tích của tất cả các mặt của hình

đa diện đó. Khi đó:
B. S  6a 2 .

A. S  a 2 3 .

C. S  4a 2 .

D. S  24a 2 .

Câu 24: Cho các hàm số y  a x và y  b x với a, b là những số thực dương khác 1 có đồ thị như hình vẽ.

Đường thẳng y  3 cắt trục tung, đồ thị hàm số y  a x và y  b x lần lượt tại H , M , N . Biết rằng
2 HM  3MN , khẳng định nào sau đây đúng?

.
B. a  b .
2

A. 3a  5b .

3

C. a  b .
3

D. a5  b3 .

5

Câu 25: Cho tứ diện ABCD có ABC là tam giác đều cạnh bằng a . BCD vuông cân tại D và nằm
trong mặt phẳng vuông góc với  ABC  . Tính theo a thể tích của tứ diện ABCD .

3a3
3a3
a3 3
a3 3
B.
C.
.
D.
.
.
.
24
8
8
24
Câu 26: Cho khối chóp đều S . ABCD có cạnh đáy là 2a , cạnh bên là 3a . Tính thể tích của khối chóp
S . ABCD .
4a 3 7
a3 7
2a 3 17
2a 3 34
A.
.
B.
.
C.
.
D.
.
3
3
3
3
A.

Câu 27: Hàm số f  x   log  x 2019  2020 x  có đạo hàm là
A. f   x  
C.

 2019 x

2018

 2020  ln10

x 2019  2020 x

x
f  x 

2019

 2020 x  ln10

2019 x 2018  2020

.

.

B. f   x  
D. f   x 

x 2019  2020 x
.
 2019 x2018  2020  ln 2018

 2019 x


2018

 2020  loge

x 2019  2020 x

.

Trang 21/25 - Mã đề thi 169

Câu 28: Một doanh nghiệp sản xuất và bán một loại sản phẩm với giá 45 (ngàn đồng) mỗi sản phẩm, tại
giá bán này khách hàng sẽ mua 60 sản phẩm mỗi tháng. Doanh nghiệp dự định tăng giá bán và họ ước
tính rằng nếu tăng 2 (ngàn đồng) trong giá bán thì mỗi tháng sẽ bán ít hơn 6 sản phẩm. Biết rằng chi phí
sản xuất mỗi sản phẩm là 27 (ngàn đồng). Hỏi doanh nghiệp nên bán sản phẩm với giá nào để lợi nhuận
thu được là lớn nhất ?
A. 46 ngàn đồng.
B. 48 ngàn đồng.
C. 47 ngàn đồng.
D. 49 ngàn đồng.
Câu 29: Cho hình hộp chữ nhật ABCD. ABC D có AB  a , AD  2 a , AA  3a . Thể tích khối nón có
đỉnh trùng với tâm của hình chữ nhật ABCD , đường tròn đáy ngoại tiếp hình chữ nhật AB C D  là
5 a3
15 a3
A.
.
B.
.
C. 5 a3 .
D. 15 a 3 .
4
4
  1200 . Góc giữa
Câu 30: Cho lăng trụ đứng ABC . A ' B ' C ' có đáy là ABC với AB  2a, AC  a, BAC

 A ' BC  và  ABC  là 450 . Tính thể tích của khối lăng trụ
A.

a3 7
.
7

B.

3a 3 7
.
14

Câu 31: Tìm m để hàm số f ( x)  (m  2)
A. m  .

B. m  2.

C.

ABC . A ' B ' C ' .

a3 7
.
14

D.

3a 3 7
.
7

x3
 (m  2) x 2  (m  8) x  m 2  1 nghịch biến trên .
3
C. m  2.
D. m  2.

Câu 32: Một chất điểm chuyển động theo quy luật S  6t 2  t 3. Vận tốc v (m/s) của chuyển động đạt giá
trị lớn nhất tại thời điểm t (s) bằng
A. 4 (s).
B. 2 (s).
C. 12 (s).
D. 6 (s).
Câu 33: Biết log 2 x  6 log 4 a  4 log 2 b  log 1 c với a, b, c là các số thực dương bất kì. Khẳng định nào
2

sau đây đúng?
A. x  a3  b2  c .

B. x 

a 3c
.
b2

C. x 

ac 3
.
b2

D. x 

a3
.
b 2c

Câu 34: Tìm tất cả các giá trị của tham số m để hàm số y  x 3  3mx 2  6mx  m có hai điểm cực trị.
A. m   0;2  .

B. m   ;0    8;   .

C. m   ;0    2;   .

D. m   0;8  .
3

Câu 35: Số điểm cực trị của hàm số y  x  4 x 2  3 là
A. 2.
B. 3.
C. 4.
D. 0.
3
2
Câu 36: Cho hàm số y  ax  bx  cx  d có đồ thị là đường cong trong hình dưới đây. Khẳng định nào

sau đây đúng?
y

O

A. a  0 , c  0 , d  0 .
C. a  0 , c  0 , d  0 .

x

B. a  0 , c  0 , d  0 .
D. a  0 , c  0 , d  0 .

Câu 37: Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3 . Cắt hình nón đã cho bởi mặt phẳng
đi qua đỉnh và cách tâm của đáy một khoảng bằng 2 , ta được thiết diện có diện tích bằng
A. 20.

B.

8 11
.
3

C. 10.

D.

16 11
.
3

Trang 22/25 - Mã đề thi 169

Câu 38: Cho hình chóp S . ABCD có đáy là hình thang cân với AB / /CD, AB  2a, AD  CD  a . Hình

chiếu vuông góc của S xuống mặt đáy là trung điểm của AC . Biết góc giữa SC và  ABCD  là 450 , tính
thể tích của khối chóp S . ABCD .
A.

9a 3
.
8

B.

3a3
.
8

C.

a3 6
.
8

D.

a3 6
.
6

Câu 39: Tổng độ dài l tất cả các cạnh của khối mười hai mặt đều có cạnh bằng 2 là
A. l  24 .
B. l  16 .
C. l  60 .
D. l  8 .
Câu 40: Cho hình chóp S . ABCD có đáy là hình vuông cạnh a . Cạnh bên SA  a 6 và vuông góc với

đáy  ABCD  . Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S . ABCD .
A. 2 a 2 .

B. 8 a 2 .

D. 2a 2 .

C. a 2 2 .

Câu 41: Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số f ( x) 

x 2  mx  m
trên
x 1

đoạn 1;2 bằng 2 ?
B. 4.

A. 2.

C. 3.

D. 1.

Câu 42: Cho lăng trụ xiên ABC . A ' B ' C ' có đáy ABC đều cạnh a . Góc giữa cạnh bên và mặt đáy là 600
và A ' A  A ' B  A ' C . Tính thể tích của khối lăng trụ.
A. V 

a3 3
.
2

B. V 

a3 3
.
4

C. V 

a3 3
.
12

D. V 

3a 3 3
.
8

Câu 43: Cho hàm số f  x  có đạo hàm trên  và có đồ thị hàm y  f   x  như hình vẽ. Xét hàm số
g  x   f  x 2  2  . Khẳng định nào dưới đây sai?

A. Hàm số g  x  đồng biến trên  2;   .

B. Hàm số g  x  nghịch biến trên  0; 2  .

C. Hàm số g  x  nghịch biến trên  ; 2  .

D. Hàm số g  x  nghịch biến trên  1; 0  .

Câu 44: Cho các số thực dương a , b thỏa mãn log16 a  log 20 b  log 25

2a  b
a
. Đặt T  . Khẳng định
3
b

nào sau đây đúng?
B. 0  T 

A. 2  T  0 .

1
.
2

C.

1
2
T  .
2
3

D. 1  T  2 .

Câu 45: Cho hình trụ có hai đáy là hình tròn  O  và  O  . Trên hai đường tròn đáy lấy hai điểm A, B

sao cho góc giữa AB và mặt phẳng chứa đường tròn đáy bằng 45o và khoảng cách giữa hai đường thẳng
AB với OO bằng
A. V 

 a3 2
6

.

a 2
. Biết bán kính đáy bằng a, thể tích của khối trụ là
2

B. V 

 a3 2
2

.

C. V 

 a3 2
3

.

D. V   a 3 2.

Trang 23/25 - Mã đề thi 169

Câu 46: Một chiếc hộp hình trụ với bán kính đáy bằng chiều cao và bằng 10cm. Một học sinh bỏ một
miếng bìa hình vuông vào chiếc hộp đó và thấy hai cạnh đối diện của miếng bìa lần lượt là các dây cung
của hai đường tròn đáy hộp và miếng bìa không song song với trục của hộp. Hỏi diện tích của miếng bìa
đó bằng bao nhiêu?

A. 300cm2 .

B. 200cm2 .

C. 250cm2 .

D. 150cm2 .

Câu 47: Cho hình chóp đều S . ABC có tất cả các cạnh đều bằng a . Mặt phẳng  P  song song với mặt

phẳng  ABC  và cắt các cạnh SA, SB, SC lần lượt tại A ', B ', C ' . Tính diện tích của tam giác A ' B ' C ' biết
VSA ' B 'C '
1
 .
VABCA ' B 'C ' 7
a2 3
a2 3
a2 3
a2 3
.
B. S A ' B 'C ' 
.
C. S A ' B 'C ' 
.
D. S A ' B 'C ' 
.
16
4
8
48
Câu 48: Một bác nông dân cần xây một hố ga không có nắp dạng hình hộp chữ nhật có thể tích
25600(cm3 ) , tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Tính diện tích của đáy hố ga để
khi xây hố ga tiết kiệm nguyên vật liệu nhất.
A. 6400(cm 2 ) .
B. 160(cm 2 ) .
C. 1600(cm 2 ) .
D. 640(cm 2 ) .

A. S A ' B 'C ' 

1 
a 1

Câu 49: Cho hàm số f ( x)  ln 1  2  . Biết rằng f '(2)  f '(3)  ...  f '(2019) 
là phân số tối
b
 x 
giản với a, b là các số nguyên dương. Khẳng định nào sau đây đúng?
A. 2a  b .
B. a  2b .
C. a  b .
D. a  b .
Câu 50: Cho hàm số bậc ba y  f ( x) có đồ thị là đường cong hình bên. Đồ thị hàm số

( x 2  3x  2) x  1
có tất cả bao nhiêu đường tiệm cận đứng ?
g ( x) 
x[ f 2 ( x)  f ( x)]

A. 4.

B. 5.

C. 3.

D. 2.

-----------------------------------------------

----------- HẾT -----------

Trang 24/25 - Mã đề thi 169

BẢNG ĐÁP ÁN
made
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169

cautron
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

dapan
C
D
B
C
C
C
C
C
C
B
B
B
A
D
A
C
D
A
D
A
B
C
B
A
D
D
A
D
A
B
B
B
D
C
C
D
A
D
B
D
A
A
A
B
B
D
A
A
A
C

made
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245

cautron
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

dapan
B
D
D
A
C
C
B
C
C
C
D
A
A
D
C
C
B
B
A
D
D
C
A
B
A
C
B
B
D
B
D
C
A
D
C
B
D
D
D
A
B
B
A
B
A
D
C
A
D
A

made
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326
326

cautron
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

dapan
C
C
D
C
B
B
A
A
C
D
D
B
C
D
B
A
A
D
C
A
D
B
B
D
B
B
A
A
C
B
C
C
C
B
D
D
A
B
D
C
B
C
C
A
A
D
A
A
C
D

made
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493
493

cautron dapan
1
D
2
B
3
C
4
A
5
B
6
C
7
A
8
D
9
D
10
B
11
B
12
C
13
A
14
D
15
C
16
C
17
B
18
A
19
A
20
B
21
D
22
B
23
D
24
C
25
C
26
A
27
D
28
A
29
A
30
B
31
D
32
B
33
B
34
C
35
B
36
A
37
B
38
C
39
C
40
B
41
A
42
B
43
D
44
D
45
D
46
C
47
A
48
D
49
A
50
C

Trang 25/25 - Mã đề thi 169