Cộng đồng chia sẻ tri thức Doc24.vn

Chuyên đề 5: Phương trình logarit chứa tham số

Gửi bởi: Phạm Thọ Thái Dương vào ngày 2020-03-12 08:00:33

♦ Dạng toán Tìm m để phương trình có số nghiệm cho trước:

    • Bước 1. Tách m ra khỏi biến số x và đưa về dạng f(x)=A(m).

    • Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D.

    • Bước 3. Dựa vào bảng biến thiên để xác định giá trị tham số A(m) để đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x).

    • Bước 4. Kết luận các giá trị của A(m) để phương trình f(x)=A(m) có nghiệm (hoặc có k nghiệm) trên D.

♦ Lưu ý

    • Nếu hàm số y=f(x) có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A(m) cần tìm là những m thỏa mãn:

    • Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x) tại k điểm phân biệt.

Hoặc sử dụng điều kiện có nghiệm của phương trình bậc hai với lưu ý sau.

♦ Nhắc lại: Phương trình bậc hai có hai nghiệm thỏa mãn

Hoặc sử dụng định lí đảo về dấu tam thức bậc hai:

Ví dụ minh họa

Bài 1: Tìm tham số thực m để phương trình: log23 x+log3x+m=0 có nghiệm.

Hướng dẫn:

Tập xác định D=(0;+∞).

Đặt log3x=t. Khi đó phương trình trở thành t2+t+m=0 (*)

Phương trình đã cho có nghiệm khi phương trình (*) có nghiệm: Δ=1-4m ≥ 0 ⇔ m ≤ 1/4.

Vậy để phương trình có nghiệm thực thì: m ≤ 1/4.

Bài 2: Tìm tham số m để phương trình log2(5x-1)log4(2.5x-2)=m có nghiệm thực x ≥ 1.

Hướng dẫn:

Điều kiện: 5x-1 > 0 ⇔ x > 0

log2(5x-1)log4(2.5x-2)=m

⇔ log2(5x-1) 1/2 log2(2(5x-1))=m

⇔ log2(5x-1)(1+log2(5x-1))=2m

⇔ log22 (5x-1)+log2(5x-1)=2m

Đặt log2(5x-1)=t. Khi đó phương trình đã cho trở thành t2+t-2m=0    (*)

Phương trình đã cho có nghiệm x ≥ 1 khi phương trình (*)có nghiệm

Vậy phương trình có nghiệm thực x ≥ 1 thì m ≥ 3.

Bài 3: Tìm tham số thực m để phương trình 

 có nghiệm thực duy nhất.

Hướng dẫn:

⇔ log(mx)=2log(x+1)

⇔ log(mx)=log(x+1)2

⇔ mx=(x+1)2 ⇔ x2+(2-m)x+1=0 (*)

Phương trình đã cho có nghiệm duy nhất khi phương trình (*)có một nghiệm thỏa mãn

TH1: phương trình (*) có hai nghiệm thỏa mãn -1 < x1 ≤ x2:

TH2: phương trình (*) có hai nghiệm thỏa mãn x1 < -1 < x2: af(-1) < 0 ⇔ m < 0.

Các giá trị m cần tìm 

Lượt xem: 321