Cộng đồng chia sẻ tri thức Doc24.vn

bài tập trắc nghiệm về tích phân

b0a64647e3aa0dc618e37c4af1bb5931
Gửi bởi: hoangkyanh0109 vào ngày 2017-02-06 22:15:34 || Kiểu file: PDF Lượt xem: 262 | Lượt Download: 0 | File size: 0 Mb

Nội dung tài liệu Xem trước tài liệu

Link tài liệu:
Tải xuống

Các tài liệu liên quan

Thông tin tài liệu

SCELL 2016 TÍCH PHÂN PHIẾU BÀI TẬP TÍCH PHÂN THEO DẠNG ÔN: GIẢI TÍCH 12 DẠNG 1: TÍCH PHÂN CÁC HÀM SỐ HỮU TỈ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 3230I (1 x) dx 1230I (1 2x)(1 3x 3x dx  102x 9I dxx3 210x 3x 2I dxx3 2215I dxx 6x 9 2120xI dx4x 2211I dxx 2x 2 1204x 1I dxx 5x 6 14220xI dxx1 32213xI dxx 2x 1 1202x 2)1I dx(x 1) ( 221x1I dxx2 32120x 2x 10x 1I dxx 2x 9  1251I dx2x 8x 26 13 50I (x 1) dx 15 60I (1 dx 30x1I dx2x 3 1203I dxx 4x 5 120xI dx4x 3321xI dxx 16 2221xI dxx 7x 12 13211I dx9x 6x 5 23203x 2I dxx1 3231I dxx3 1303I dxx1 21302 5I dxxx1 120x3I dx(x 1)(x 3x 2)  4211I dxx (x 1)SCELL 2016 TÍCH PHÂN 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 130xI dx(2x 1) 23211Ixxxdx 534223xx1I dxx 5x 6  2140(x 1)I dx(2 1) 12025xI dx( 4)x 210 211I dxx(1 )x 2361xx1I dx(1 ) 22411xI dx1x 22411xI dx1x 73842xI dx1 2x 32340xI dxx1 1304xI dx(x 1) 31230xI dx(x 1) 4160x1I dxx1 13204x 1I dxx 2x 2  2531x1I dxx 130xI dx(x 1) 9911010(7x 1)I dx(2x 1) 27150Idx(1 )xx 43411I dxx(1 ) 7271I dxx(1xx)1 22001210021I dx(1 )xx 4160x1I dxx1 2140xIxdxx1 2152241x1I dxx1x 14201I dx(x 4x 3) 22201I dx(4 ) 52511xI dxx(1 )SCELL 2016 TÍCH PHÂN DẠNG 2: TÍCH PHÂN CÁC HÀM SỐ VÔ TỈ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 10x xIdx 1320x xIdx 3320x xIdx 2230I (x 4) dx 7330x1dx3x 1I 2311dxx xI 23251I dxx 4 23220xdxI1x 22231dxx 1I 37320xdIx1x 10xdx2x 1I 1201 dIx 32211I dxx x 1201I dx4x 931x. xIdx 115 80I dx 1520x xIdx 2320(x 3) 6x dIx  21303xdxx2I 101dx3 2xI 4221dxx 16 xI 230x1I dx3x 2 4271I dxx x 62231dxx 9I 53320x 2xI dxx1 381x1I dxx 1230(1 )Idx 322121dxIx xSCELL 2016 TÍCH PHÂN 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 22220xI dx1x 120x1Idx 221I4x dx 230x1xxId1 24433dxIx4x 412dxx 4I 20xI dx2 x  21xI dx1 1 103I dxx x 1331I dxx (x 4)  64x 1. dxx xI2 2222x1dxx 1I 1312xdxx1I 0211dxx2Ix9 2222x 5dxx 4xI13 2221x dIx 220I dx 1203x 6x 1dxI  210xI dx(x 1) 1 3221I dxx1 101dxx xI 721dx2 1I 3120xI dxx x 1211I dx1 x  2321x1dxxI 122121dx(3 2x) 12xI4x  2120xxIdx4 33241xxdxxI 3211dx4x xI 212221xdxxISCELL 2016 TÍCH PHÂN 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 221xdx3x 9x 1I 402x 1dx1 2xI1 621dx2x 4xI1  251x1dxx 3x 1I 2302x 1dxxI1 024I(1 2xx1x)d 322202 3x xdxxxIx1 1211dx1 xI  1313413xIx(x )dx 22731Ix2dxxx xI dxxx32220(1 (2 )  133301dx). 1I(1 x 42223xdx1(x 1xI 2160xdx4xI 22252( dxI x 210xxdx1 xI 101xdx1xI 30x3dx3 1Ix3  210xdx(x 1) x21I 1302(x 1) 2x xIxd 823x1dxx1I 23230Ixxdx4 22522xdx( 1) 5Ix 1201xxxId1 xI dxx x3202( 1) 1  332241x 2015xdxIxx 2241(3 )dx2xxI 2120xdx3 xIxSCELL 2016 TÍCH PHÂN DẠNG 3: TÍCH PHÂN CÁC HÀM SỐ LƯỢNG GIÁC 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 324I tan dx 426(2cot xI5) dx 2202I cosin dxxs 2302I 2cos 3s( dxin x) 2440I cos2x( sin xcos x)dx 20I sin x.sin 2x.sin 3xdx 220cos x.cos 4x dxI 2230sin 2x(1 sin x) dxI 232cos cos cosIxdx 344tan xdxI 450tan dxI 230I sin dx 440cos dxI 46I cot dx 362tan cotxI dx 3226tan cot xI2dx 263501 cos sin x.cos xdIx 30sin x. tan xdxI 220sin cos x(1 cos x)Idx 2540cos sin xdxI 436cot dxI 324tan xdxcos cos xISCELL 2016 TÍCH PHÂN 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 2441I dxsin x 301dxcos xI 4601I dxcos x 4301dxcos xI 3204 sin xdx1 cosxI 240sin 2xdx1 cos xI 20sin 2x.cos xdx1Icos x 20sin 2x sin xdx1I3 cos x 2401 sin xdx1 sin 2xI 3420sin xdxcos xI 520sin xdxcos 1Ix 326cos 2xdx1 cos 2xI 4440sin cos xdxsin cos 1I 20sin cos cos xdxsin 2I 20cos xdx2 cos 2xI 620cos xdx6 sin xIsin x 24cos sin xdx3 sin 2xI 4261dxsin coItx 342 50sin xdx(tan 1)I.cos x 330sin xdxcos xI 240sin 2xdx1 sin xI 20sin 2xdx1 cos xI 3320sin xdx(sin 3)I 022sin 2xdx(2 sin x)ISCELL 2016 TÍCH PHÂN 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 261 sin 2x cos 2xdxcos sin xI 3220sin x.cos xdxcoIs 1 32231dxsin cos xI 3461dxsin cos xI 4220sin 2xdxsin cos xI 360sin sin xdIxcos 2x 220sin xdxcos 3I 401dx2 tan xI 220cos xdxcos 1I 32420cos xdxcos cIos 3 231dxsin cos xI 20sin xdx1 sin xI 3364 sin xdx1 cos xI 3261dxcos x.sin xI 20sin 3xdxcos 1Ix 324tan xdxcos cos 1Ix 420tan 1( dxtan 1Ix 20sin 2x sin xdxcoIs 3x 1 320cos xdx1 sin xI 204 cos 3sin 1dx4 sin cos 5I 240sin xdxI 201 sin xdx1 cos xI 22cos 1dxcos 2I 20cos xdxsin cIos 1SCELL 2016 TÍCH PHÂN 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 20cos xdx7 cos 2xI 20sin xdxxI 201dx2 sin xI 201dx2 cos xI 223cos xdx(1 cos x)I 2432cos xIcsin 1dos xx 2261Ix2sin x. sin dx 201 sin xIdx 22I x.(2 cos2x )sin dx  4660Ix cossin 4xdxsixn 31dx2 sin xIcos x 2201 sin 2x dIxcos x 20cos xdxcos 1I 20cos xdx2 cos xI 320cos xdxcos 1Ix 2360sin xdxcos xI 201dx2 cos siIn 3 38cot tan 2tan2xdxsin 4xI 601dx2 sin 3Ix 2230I cos 1)c( dxos x 220cos sin 2x 38dxs inx coIsx 230sin xdx(sinx 3Icos x) 601dxsinx cos xI 40cos sin xdx3 sin 2xISCELL 2016 TÍCH PHÂN 95, 97, 99, 101, 103, 105, 96, 98, 100, 102, 104, 106, DẠNG 4: TÍCH PHÂN CÁC HÀM SỐ SIÊU VIỆT 1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12, 14, 230sin xdxcos x. sinIx3 60tan(x )4dxcos 2xI 240tan xdxcosx .Icos x1 20223sin cos xdx3sinIx 4cos x 24sin(x )4dx2 sinIx cos 3 223cos xdx(1 cos x)I 2022Icos sin xsin 2xdx 240Icossin xdx5 sin x. 2xcos x 360tandxcos 2xxI 230cos 2xdx(cos siIn 3) 34354Ix.cos1dxsxin 36cot xdxsin x.sin(Ix)4 xln 2x01eI dx1e 2x1x0edxe1I ln 3x01dIxe1 2x1x1eI1d 2x2x0edxe1I x1x0eI dxe1 13x 10I dx ln 2x0e 1dxI 1x01dxe4I xln 3x30edx(e 1)I 1x01I dx3e 12 x01I dxee x212x0(1 )I dx1e 4x1I dxTrên đây chỉ là phần trích dẫn 10 trang đầu của tài liệu và có thế hiển thị lỗi font, bạn muốn xem đầyđủ tài liệu gốc thì ấn vào nút Tải về phía dưới.