Cộng đồng chia sẻ tri thức Doc24.vn

Bài 89 (SGK trang 104)

Lý thuyết

Câu hỏi

Trong hình 67, cung AmB có số đo là 60o. Hãy:

a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.

c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.

d) Vẽ góc ADB có đỉnh D ở trong đường tròn. So sánh \(\widehat{ADB}\) và \(\widehat{ACB}.\)

e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB). So sánh \(\widehat{AEB}\) với \(\widehat{ACB}.\)

O A B

Hướng dẫn giải

Trong hình 67, cung AmB có số đo là 66o. Hãy:

a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.

c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.

d) Vẽ góc ADB có đỉnh D ở bên trong đường tròn. So sánh ˆADBADB^ với ˆACBACB^ .

e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (E và C cùng phía đối với AB). So sánh ˆAEBAEB^ với ˆACBACB^

Hướng dẫn trả lời:

a) Từ O nối với hai đầu mút của cung AB

Ta có ˆAOBAOB^ là góc ở tâm chắn cung AB

ˆAOBAOB^ là góc ở tân chắn cung AB nên

ˆAOBAOB^ = sđ cung AB = 60°

b) Lấy một điểm C bất kì trên (O). Nối C với hai đầu mút của cung AmB. Ta được góc nội tiếp ˆACBACB^

Khi đó: ˆACB=12sđcungAmB=12600=30ACB^=12sđcungAmB=12600=30

c) Vẽ bán kính OB. Qua B vẽ Bt ⊥ OB. Ta được góc Abt là góc tạo bởi tia tiếp tuyến Bt với dây cung BA.

Ta có: ˆABt=12sđcungAmB=300ABt^=12sđcungAmB=300

d) Lấy điểm D bất kì ở bên trong đường tròn (O). Nối D với A và D với B. ta được góc là góc ở bên trong đường tròn (O)

Ta có:

ˆACB=12sđcungAmBˆADB=12(sđcungAmB+sđcungCK)ACB^=12sđcungAmBADB^=12(sđcungAmB+sđcungCK)

Mà sđcung AmB + sđcung CK > sđcung AmB (do sđcung CK > 0) nên ˆADB>ˆACBADB^>ACB^

e) Lấy điểm E bất kì ở bên ngoài đường tròn, nối E với A và E với B, chúng cắt đường tròn lần lượt tại J và I.

Ta có góc AEB là góc ở bên ngoài đường tròn (O)

Có:

ˆACB=12sđcungAmBˆAEB=12(sđcungAmB−sđcungIJ)ACB^=12sđcungAmBAEB^=12(sđcungAmB−sđcungIJ)

Mà sđcung AmB – sđ cung IJ < sđcung AmB (do sđcung IJ > 0)

Nên ˆAEB<ˆACBAEB^<ACB^

Các câu hỏi cùng bài học