Cộng đồng chia sẻ tri thức Doc24.vn

Bài 7 - Câu hỏi (SGK trang 159)

Lý thuyết

Câu hỏi

Nêu các công thức biến đổi lượng giác đã học ?

Hướng dẫn giải

1.Công thức cộng:

sin(x+y)=sinx.cosy+cosx.siny

sin(x-y)=sinx.cosy-cosx.siny

cos(x+y)=cosxcosy-sinxsiny

cos(x-y)=cosxcosy+sinxsiny

tan(x+y)=\(\dfrac{tanx+tany}{1-tanx.tany}\)

tan(x-y)=\(\dfrac{tanx-tany}{1+tanx.tany}\)

2.Công thức nhân đôi:

sin2x=2sinx.cosx

cos2x=cos2x-sin2x=1-2sin2x=2cos2x-1

tan2x=\(\dfrac{2tanx}{1-tan^2x}\)

3. Công thức hạ bậc:

sin2x=\(\dfrac{1-cos2x}{2}\)

cos2x=\(\dfrac{1+cos2x}{2}\)

tan2x=\(\dfrac{1-cos^2x}{1+cos^2x}\)

4. Công thức biến đổi tích thành tổng:

cosx.cosy=\(\dfrac{1}{2}\)[cos(x-y)+cos(x+y)]

sinx.siny=\(\dfrac{1}{2}\)[cos(x-y)-cos(x+y)]

sinx.cosy=\(\dfrac{1}{2}\)[sin(x-y)+sin(x+y)]

5. Công thức biến đổi tổng thành tích:

cosx+cosy=2cos\(\dfrac{x+y}{2}\).cos\(\dfrac{x-y}{2}\)

cosx-cosy=2sin\(\dfrac{x+y}{2}\).sin\(\dfrac{x-y}{2}\)

sinx+siny=2sin\(\dfrac{x+y}{2}\).cos\(\dfrac{x-y}{2}\)

sinx-siny=2cos \(\dfrac{x+y}{2}\).sin \(\dfrac{x-y}{2}\)

Các câu hỏi cùng bài học