Cộng đồng chia sẻ tri thức Doc24.vn

Bài 3.8 (Sách bài tập trang 172)

Lý thuyết

Câu hỏi

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số : \(f\left(x\right)=\dfrac{1}{1+\sin x}?\)

a) \(F\left(x\right)=1-\cos\left(\dfrac{\pi}{2}+\dfrac{\pi}{4}\right)\)

b) \(G\left(x\right)=2\tan\dfrac{x}{2}\)

c) \(H\left(x\right)=\ln\left(1+\sin x\right)\)

d) \(K\left(x\right)=2\left(1-\dfrac{1}{1+\tan\dfrac{x}{2}}\right)\)

Hướng dẫn giải

Để kiểm tra một hàm F(x) có phải là một nguyên hàm của f(x) không thì ta chỉ cần kiểm tra F'(x) có bằng f(x) không?

a) \(F\left(x\right)\) là hằng số nên \(F'\left(x\right)=0\ne f\left(x\right)\)

b) \(G'\left(x\right)=2.\dfrac{1}{2}.\dfrac{1}{\cos^2x}=1+\tan^2x\)

c) \(H'\left(x\right)=\dfrac{\cos x}{1+\sin x}\)

d) \(K'\left(x\right)=-2.\dfrac{-\left(\dfrac{1}{2}.\dfrac{1}{\cos^2\dfrac{x}{2}}\right)}{\left(1+\tan\dfrac{x}{2}\right)^2}=\dfrac{\dfrac{1}{\cos^2\dfrac{x}{2}}}{\left(\dfrac{\cos\dfrac{x}{2}+\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2}\)

\(=\dfrac{1}{\left(\cos\dfrac{x}{2}+\sin\dfrac{x}{2}\right)^2}=\dfrac{1}{1+2\cos\dfrac{x}{2}\sin\dfrac{x}{2}}\)

\(=\dfrac{1}{1+\sin x}\)

Vậy hàm số K(x) là một nguyên hàm của f(x).

Các câu hỏi cùng bài học