Cộng đồng chia sẻ tri thức Doc24.vn

4 đề trắc nghiệm chuyên đề số phức - Bùi Thế Việt

f6a3e1e25e0902a0e15763878f3b6068
Gửi bởi: Khoa CNTT - HCEM vào ngày 2021-02-23 07:31:19 || Kiểu file: PDF Lượt xem: 17 | Lượt Download: 0 | File size: 0.461163 Mb

Nội dung tài liệu Xem trước tài liệu

Link tài liệu:
Tải xuống

Các tài liệu liên quan

Thông tin tài liệu

CASIO LUYỆN THI THPT QUỐC GIA
ĐỀ TỰ LUYỆN
(Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017
Môn: TOÁN HỌC
Chuyên đề: Số phức
Đề số 25

Họ và tên : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Facebook : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bài 1. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z+
thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.
3√
22 √
3√
A. e =
43
B. e =
41
C. e =
41
25
25
25

D. e =

1
z

22 √
43
25

z
Bài 2. Một acgumen của số phức z 6= 0 là φ thì một acgumen của

1+i
π
π
π
A. −φ −
B. φ +
C. φ − π
D. −φ +
4
2
4
1
Bài 3. Tính z =
2 − 5i
2
5
1
7
2
5
1
7
A. z =
± i
B. z =
+ i
C. z =
+ i
D. z =
− i
29 29
29 29
29 29
29 29
Bài 4. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị nhỏ nhất của |z|.
A. 16
B. 12
C. 9
D. 10
Bài 5. Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z là
A. Tập hợp các số thực dương
B. Tập hợp các số thực không âm
C. Tập hợp các số thực D. Tập hợp các số phức không phải số ảo
Bài 6. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị lớn nhất của |z|.
A. 12
B. 16
C. 10
D. 9
Bài 7. Tìm tất cả giá trị của m để phương trình 2z 2 − (3 + 8i)z − m − 4i = 0 có một nghiệm thực.
B. m = −4

A. m = 2

3−z
=2−i
1 + i − 2z
2
2
B. z = −
+ i
13 13

D. m = −3

C. m = 1

Bài 8. Tìm số phức z sao cho
A. z = −

3
3
+ i
13 13

Bài 9. Kết luận nào sau đây là đúng ?
A. |z1 + z2 | ≤ |z1 | + |z2 |
C. |z1 + z2 | ≥ |z1 | + |z2 |

C. z = −

3
2
+ i
13 13

D. z = −

2
3
+ i
13 13

B. |z1 + z2 | > |z1 | + |z2 |
D. |z1 + z2 | < |z1 | + |z2 |

Bài 10. Tìm modulus
của số phức z = √
(2 − i) (1 − 3i).


A. |z| = 2 7
B. |z| = 2 5
C. |z| = 4 2

12
Bài 11. Tính Argument của số phức z = − 3 + i .
5

A. arg(z) = 0
B. arg(z) =
C. arg(z) =
6
6



D. |z| = 5 2

D. arg(z) =

1
4096

Bùi Thế Việt - Trang 1/11

√ n
Bài 12. Tìm điều kiện của số nguyên dương n để zn = 1 + 3i là số thực.
A. n chia hết 3
B. n chia cho 3 dư 1
C. n chia cho 4 dư 1
D. n chia cho 3 dư 2
5



+ i sin
cos
17
17
Bài 13. Tìm phần ảo của số phức z = 
3 .


− i sin
cos
17
17
A. 0
B. −1
C. 2
D. 1
Bài 14. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
2016 + 2017i
w=
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
z
1√
1√
3√
3√
A. r =
1626509
B. r =
8132545
C. r =
1626509
D. r =
8132545
2
2
2
2
Bài 15. Cho các số phức z và w thỏa mãn zw 6= 1 và |z| = 1 hoặc |w| = 1. Cho A =
|A|
A. |A| = 1

B. |A| =

1
2

C. |A| =

3
2

z−w
. Tính
1 − zw

D. |A| = 2

Bài 16. Cho số phức z thỏa mãn 2<(z) − 3=(z) = 6 với <(z), =(z) là phần thực, phần ảo của z.
Khi đó giá trị nhỏ nhất của |z| là :
6
8
7
5
B. √
C. √
D. √
A. √
13
13
13
13
Bài 17. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai ?
A. u − v = 5 − 7i
B. 3u − v = 9 + 9i
C. u + v = −1 − 3i
D. 2u − 3v = 13 − 16i
Bài 18. √
Cho iz 3 + z 2 − z + i = 0.
√Khi đó giá trị của |z| là :
A. 5
B. 2
C. 1

D. 2

3
Bài 19. Cho z1 , z2 , z3 là ba nghiệm phức
+ |z3 |.
√ của phương trình z + 8 = 0. Tính |z1 | + |z2 | √
C. 6
D. 2 + 2 3
A. 3
B. 2 + 3

Bài 20. Cho số phức z =

(1 + 2i) (1 + i)
. Kết luận nào sau đây là đúng khi nói về argument của số
−2 − 3i

phức z.
A. arg(z) > 0
D. arg(z) = 0

B. arg(z) < 0

C. arg(z) không xác định

Bài 21. Gọi z1 , z2 , z3 , z4 , z5 , z6 là 6 nghiệm phức của phương trình z 6 + 8 = 0. Tính |z1 | + |z2 | + |z3 | +
|z
√4 | + |z5 | + |z6 |.



B. 6 3
C. 3 2
D. 2 3
A. 6 2
Bài 22. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức w =
A. Phần ảo của w là −
C. Phần ảo của w là

1
4

2
5

z−1
z−2

3
4
6
D. Phần thực của w là −
5
B. Phần thực của w là

Bùi Thế Việt - Trang 2/11

2 + 3i
4 − 5i
23
3
+ i
A. z = −
43 43

Bài 23. Tính z =

B. z = −

7
22
+ i
41 41

Bài 24. Tìm phần thực của số phức z = ee
A. <(z) = ee sin 1 sin (e cos 1)
C. <(z) = ee cos 1 cos (e sin 1)

C. z =

3
23
+ i
43 43

D. z =

7
22
+ i
41 41

1+i

B. <(z) = ee sin 1 cos (e cos 1)
D. <(z) = ee cos 1 sin (e sin 1)

Bài 25. Cho số phức z thỏa mãn |z| = 1 và z 2n 6= −1 với mọi n là số nguyên dương. Nhận xét nào
zn
?
sau đây là đúng khi nói về số phức w =
1 + z 2n
A. Tập hợp điểm biểu diễn của w là trục
B. w là số thuần ảo
hoành
1
D. Phần ảo của w bằng 0
C. |w| =
2
√ 
π
π
+ i sin
2 cos
12
12 .
Bài 26. Rút gọn 


2 cos
+ i sin
6
6
1 1
1 1
1 1
1 1
B.
− i
C.
+ i
D. − − i
A. − + i
2 2
2 2
2 2
2 2
Bài 27. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thỏa mãn

.
arg(z + 3 + 2i) =
4
A. Một đường tròn
B. Một đoạn thẳng
C. Một đường thẳng
D. Một tia
Bài 28. Biết z = 3 − 2i thỏa mãn phương trình z 4 − 6z 3 + 18z 2 + pz + 65 = 0. Tìm p.
A. p = −21
B. p = −30
C. p = 0
D. p = 14
Bài 29. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với a, b ∈ Z. Cho x, y
là 2 số nguyên Gaussian. Khi đó thương phép chia Euclid của x cho y là một số nguyên
x
Gaussian z sao cho z gần nhất khi biểu diễn trên hệ trục tọa độ. Tìm thương phép chia
y
10 + 9i
Euclid
4 − 7i
A. 2i
B. −1 + i
C. −1 + 2i
D. i

x + yz = 2
Bài 30. Cho các số phức x, y, z thỏa mãn y + zx = 2 . Kết luận nào sau đây là đúng ?

z + xy = 3
A. Tồn tại các số phức (x, y, z) = (1 + i, 1 − i, 1) thỏa mãn bài toán.
B. Không tồn tại các số phức x, y, z thỏa
√ mãn bài
√ toán.

C. Tồn tại các số phức (x, y, z) = 1 + 2i, 1 − 2i, 1 thỏa mãn bài toán.
D. Tồn tại các số phức (x, y, z) = (1 + 2i, 1 − 2i, 1) thỏa mãn bài toán.


Bài 31. Tính Argument của số phức z = 3 − 2 + i.
11π


A. arg(z) =
B. arg(z) =
C. arg(z) =
12
7
7
Bài 32. Với mọi số phức z, ta có |z + 1|2 bằng
2
A. zz + z + z + 1
B. |z| + 2 |z| + 1

C. z + z + 1

D. arg(z) =


12

D. zz + 1

Bùi Thế Việt - Trang 3/11

2 − 3i
Bài 33. Tìm modulus của số phức z =
.

√3 − i
13
10
A. |z| =
B. |z| =
10
13

r
C. |z| =

10
13

r
D. |z| =

13
10

Bài 34. Cho số phức z thỏa mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức
w = (4 − 3i)z 2 − 4 − 2i trên hệ tọa độ Oxy thuộc một đường tròn. Tìm tâm I của đường
tròn đó.
A. I(−2, −4)
B. I(−2, 4)
C. I(−4, −2)
D. I(2, −4)

Bài 35. Biểu diễn số phức z = 4 3 − 4i dưới dạng lượng giác là :
−π
−π
−π
−π
A. z = 8 sin
+ 8 cos
B. z = 8 sin
+ 8i cos
6
6
6
6
−π
−π
−π
−π
C. z = 8 cos
+ 8 sin
D. z = 8 cos
+ 8i sin
6
6
6
6
3(z + 2)
= 5 − 2i. Khi đó giá trị của z là :
z + 2i
B. z = 3 + 2i
C. z = 3 − 2i
D. z = 5 + i

Bài 36. Cho số phức z thỏa mãn
A. z = 5 − i

Bài 37. Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của z, 2z, z, iz trên hệ
trục tọa độ Oxy. Nhận xét nào sau đây là đúng ?
A. OB và OC đối xứng nhau qua Ox
B. OC vuông góc với OA
\
C. OB vuông góc với OD
D. Oy là phân giác của góc BOD
Bài 38. Tìm phần ảo của số phức z =
B. −6

A. 3

26
+ i69
−3 + 2i

Bài 39. Gọi A, B là điểm biểu diễn của số phức z1 =
AB.
A. AB =

3√
2
5

B. AB =

D. −3

C. 6

1√
2
3

2 − 3i
và z2 = 4 + i. Tính độ dài đoạn thẳng
1−i
2
3

C. AB = √

3
2

D. AB = √

Bài 40. Cho các
z2 = 4 + i. Tìm modulus
2.
√ số phức z1 = 5 − 3i và √
√ của số phức z = z1 + z√
A. |z| = 58
B. |z| = 13 5
C. |z| = 85
D. |z| = 5 13
Bài 41. Tìm số phức z thỏa mãn z 2 + 4z + 13 = 0.
A. z = 2 ± 3i
B. z = −2 ± 3i

C. z = 4 ± 6i

D. z = −4 ± 6i

Bài 42. Tính i (1 + i) (1 − i)2 .
A. 2 + 2i
B. 4 + 6i

C. 7 − 12i

D. 5 − 3i

1+i
1+i
. Tính A = z 2 +
2−i
z
42 19
42 19
24 19
24 19
A. A =
+ i
B. A =
− i
C. A = −
− i
D. A =
− i
25 25
25 25
25 25
25 25
√ 9
Bài 44. Tìm phần thực của số phức z = 1 + 3i



A. 256 3
B. 256 2
C. 256
D. 128 5

Bài 45. Gọi A là điểm biểu diễn số phức z = 3 − i trên hệ trục tọa độ Oxy. Khi đó độ dài đoạn
thẳng
OA là :


A. 2 2
B. 2
C. 1
D. 3

Bài 43. Cho số phức z =

Bùi Thế Việt - Trang 4/11

2
a − bi
Bài 46. Cho z =
+
. Khẳng định nào sau đây là đúng ?
a + bi

A. z = z
B. zz = |z|
C. |z| = a2 + b2
D. z = z|z|

10
1 − 2i
Bài 47. Tìm phần thực của
.
1−i
779
237
237
779
A.
B. −
C.
D. −
32
8
32
8


a + bi
a − bi

2



Bài 48. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|.
A. Đường thẳng y = −4x + 1
B. Đường thẳng y = −5x + 3
C. Đường thẳng y = −3x + 4
D. Đường thẳng y = −x + 3
Bài 49. Biết cos5 x = a cos 5x + b sin 3x + c cos x với a, b, c là các số thực. Tính a − b + c.
5
1
3
5
B.
C.
D.
A.
16
8
16
8
Bài 50. Biết z = 5 − 2i là nghiệm của phương trình z 3 + (−5 + 2i) z 2 + 4z + 8i − 20 = 0. Tìm các
nghiệm còn lại của phương trình
√trên.

A. z = ±i
B. z = 2 ± 5i
C. z = ± 5i
D. z = ±2i


π
z
= .
Bài 51. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
z − 4i
2
A. Nửa đường tròn bán kính 2 tâm (−2, 0) thuộc góc phần tư thứ tư
B. Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất
C. Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư
D. Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất
π
Bài 52. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg(z − 2) = .
3


A. Đường thẳng y = √3x + 2√3 thuộc góc phần tư thứ hai
B. Đường thẳng y = √3x − 2√3 thuộc góc phần tư thứ hai
C. Đường thẳng y = √3x − 2√3 thuộc góc phần tư thứ nhất
D. Đường thẳng y = 3x + 2 3 thuộc góc phần tư thứ nhất
Bài 53. Cho số phức z thỏa mãn |z − 2i| = |z + 2|. Tập hợp điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Parabol tiếp xúc đường thẳng y = −x
B. Ellipse tiêu cự 1
C. Đường thẳng y = −x
D. Đường tròn bán kính 1
Bài 54. Gọi x1 , x2 là 2 nghiệm phức của phương trình tan2 t · x2 + tan t · x + 1 = 0 với t là số thực
thỏa mãn tan t 6= 0. Tính xn1 + xn2 .
2πn
πn
cosn t
B. xn1 + xn2 = cos
cosn t
A. xn1 + xn2 = 2 cos
3
3
πn
2πn
cosn t
D. xn1 + xn2 = 2 cos
cosn t
C. xn1 + xn2 = cos
3
3
Bài 55. Số phức z nào dưới đây thỏa mãn z 2 + z + 1 = 0
A. Không có số phức z nào thỏa mãn.


1
5
C. z = −
i
2
2


1
3
B. z = − −
i
2 √2
3
5
D. z = +
i
2
2
Bùi Thế Việt - Trang 5/11

Bài 56. Cho 2 số phức z1 , z2 có |z1 | = 8, |z2 | =
A. −16 + 4i

B. −3 + 4i

1
π

z1
và arg(z1 ) = − , arg(z2 ) =
. Tính z1 z2 + .
2
4
4
z2
C. −16 + 3i
D. −3 + 3i

Bài 57. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé nhất m và giá trị lớn nhất M của |z − i| là

2
C. m = 1, M = 2
D. m = 0, M = 1


3 + i z + 1 = 0. Modulus của z là :
Bài 58. Cho số phức z thỏa mãn z 2 +
p
p
p
p




A. |z| = 2 + 3
B. |z| = 2 − 3
C. |z| = 3 − 2
D. |z| = 3 + 2
A. m = 0, M = 2

B. m = 0, M =

Bài 59. Tính√tổng tất cả các nghiệm của phương trình z 4 + 3z 2 − 28 = 0 trên trường số
√ phức.
A. 4 − 2 7i
B. 0
C. 4
D. 4 + 2 7i
Bài 60. Phương trình z 3 − (n + i)z + m + 2i = 0 có 3 nghiệm phức với n, m là các hằng số thực.
Tìm m để modulus của tích các nghiệm phức bằng 5.
A. m = 1 hoặc m = −2
B. m = 1 hoặc m = −1
C. m = 1
D. m = −2
Bài 61. Cho số phức z thỏa mãn |z + 2 − 3i| = 4. Tập hợp các điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Đường tròn đường kính 8
B. Elip tiêu cự 8
C. Đường tròn đường kính 4
D. Elip tiêu cự 4
Bài 62. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là đúng ?
u
v
A. u2 = 21 − 20i
B. uv = 4 + 19i
C.
= 5 + 7i
D.
= 5 + 7i
v
u
Bài 63. Tập hợp điểm biểu diễn của số phức z trên hệ trục tọa độ Oxy thỏa mãn arg(z −1+i) = −
là :
A. Đường thẳng y = −x với x > 1
C. Đường thẳng y = −x với x ≥ 1
Bài 64. Tính i2017
A. −i

B. Đường tròn bán kính 1
D. Nửa đường tròn bán kính 1

B. 1



Bài 65. Cho 2 số phức u = 1 + 3i và v =


1
3
1
3
A.
+
i
B.

i
2
2
2
2

π
4

D. −1

C. i



u3
3 + i. Tính 4 .
v √
1
3
C.

i
4
4


1
3
D.
+
i
4
4

Bài 66. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z| = |z − 6i|.
A. Đường thẳng x = 1
B. Đường thẳng x = 3
C. Đường thẳng y = 3
D. Đường thẳng y = 1
Bài 67. Cho số phức z = cos θ + i sin θ. Tính z n +
A. 2 sin (n − 1) θ

B. 2 cos (n − 1) θ

1
với n là số nguyên dương.
zn
C. 2 cos nθ
D. 2 sin nθ

Bài 68. Phần thực và phần ảo của số phức z = (1 + 2i)2 là :
A. Phần thực bằng 3, phần ảo bằng 4
B. Phần thực bằng −3, phần ảo bằng 4
C. Phần thực bằng −3, phần ảo bằng −4
D. Phần thực bằng 3, phần ảo bằng −4

Bùi Thế Việt - Trang 6/11

Bài 69. Nhà toán học Rafael Bombelli (1526-1572) đã tình cờ phát hiện ra số phức khi nghiên cứu
phương trình bậc 3. Ông cho rằng phương trình x3 − 3x + 1 = 0 tồn tại nghiệm
p

3
−4 + 4 −3
2
+p
A=

3
2
−4 + 4 −3
Nhà toán học Abraham de Moivre (1667-1754) phát hiện ra định lý :
(cos θ + i sin θ)n = cos nθ + i sin nθ
Sử dụng định lý Moivre, hãy rút gọn biểu thức A.




B. A = 2 sin
C. A = cos
+ i sin
A. A = 2 cos
9
9
9
9


− i sin
D. A = cos
9
9


z−6
π
Bài 70. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
= .
z−2
4

A. Đường tròn đường kính 2√2 thuộc góc phần tư thứ hai
B. Đường tròn đường kính 2√2 thuộc góc phần tư thứ nhất
C. Đường tròn đường kính 4√2 thuộc góc phần tư thứ nhất
D. Đường tròn đường kính 4 2 thuộc góc phần tư thứ hai
Bài 71. Cho số phức z = 3 − 7i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 3, phần ảo bằng −7i.
B. Phần thực bằng 3, phần ảo bằng −7.
C. Phần thực bằng 3, phần ảo bằng 7i.
D. Phần thực bằng 3, phần ảo bằng 7.
Bài 72. Cho số phức z thỏa mãn |z + 1| = 2|z − i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc
một√đường tròn. Tìm bán kính
√ r của đường tròn đó.√

5 11
3 7
17
23
B. r =
C. r =
D. r =
A. r =
3
7
13
4
Bài 73. Tính |z| với z =
A. |z| = √

4

46 53

(1 + i)4
.
(1 + 6i) (2 − 7i)
2
B. |z| = √ √
37 53

C. |z| = √

2

46 53

D. |z| = √

4

37 53

Bùi Thế Việt - Trang 7/11

Bài 74. Gọi z1 , z2 , z3 , z4 , z5 là 5 nghiệm phức của phương trình z 5 = 1 + i. Biểu diễn 5 nghiệm này
trên hệ trục tọa độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của
ngũ giác đều đó.

s
A.

√ √
3+ 5 52
2

s
B.

√ √
5+ 5 52
2

s
C.

√ √
5− 5 52
2

s
D.

3−

√ √
5 52
2

Bài 75. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z−
thuộc một đường ellipse. Tìm tiêu cự của ellipse.
A. 8
B. 4
C. 6

i
z

D. 2

Bài 76. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 6| = 6|z + 6 − 9i|.
A. Đường tròn tâm (−12, 10) bán kính 10
B. Đường tròn tâm (−10, 12) bán kính 10
C. Đường tròn tâm (12, −10) bán kính 12
D. Đường tròn tâm (−12, 10) bán kính 12
Bài 77. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
w =√(1 − 3i)z + i − 1 thuộc một
√ đường tròn. Tìm bán√kính r của đường tròn√đó.
B. r = 2 5
C. r = 2 10
D. r = 5
A. r = 10
x
y
Bài 78. Cho các số thực x, y sao cho
+
= 2 + 4i. Tính x + y.
1+i 2−i
A. x + y = 8
B. x + y = −2
C. x + y = 6
D. x + y = 14
Bài 79. Cho f (z) = z 3 + bz 2 + cz − 75 với b, c ∈ R. Biết f (−4 + 3i) = 0. Tìm b, c.
A. b = 5 và c = 1
B. b = 2 và c = 4
C. b = 4 và c = 2
D. b = 3 và c = 3
1 + z1
1 + z2
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z2
2 − z1



2 13
13
13
B. |z1 + z2 | =
C. |z1 + z2 | =
D. |z1 + z2 | =
11
22
11

Bài 80. Cho các số phức z1 và z2 thỏa mãn
là đúng ? √
2 26
A. |z1 + z2 | =
11

Bài 81. Số phức
nào dưới đây thỏa mãn z 2 = 1 + i.
r z√
r

1+ 2
1
3+ 2
2
A. z =
+p
B. z =
−p
√ i
√ i
2
2
2
+
2
2
3
+
2
r
r


3+ 2
2
1+ 2
1
C. z =
+p
D. z =
−p
√ i
√ i
2
2
3+ 2
2+2 2
Bùi Thế Việt - Trang 8/11

π
Bài 82. Cho số phức z có |z| = 2 và arg(z) = − . Tính u−1 .
6



1
1
3
3
3 1
A.
+
i
B.

i
C.
+ i
4
4
4
4
4
4


3 1
D.
− i
4
4

Bài 83. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức
1 + 3i
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
w=
z+i
4√
3√
4√
3√
A. r =
5
B. r =
14
C. r =
7
D. r =
10
5
7
7
8


n
n
Bài 84. Tìm các số hữu tỷ n sao cho − 3 + i + − 3 − i = 0
3 + 6k
3 − 6k
với k ∈ Z
B. n =
với k ∈ Z
A. n =
5
5
6 − 3k
6 + 3k
C. n =
với k ∈ Z
D. n =
với k ∈ Z
5
5
Bài 85. Tìm các số thực x, y thỏa mãn
2x + 5iy − 3ix − 4y = 16 − 21i

A. x = −3 và y = 2

B. x = 2 và y = −3

C. x = −7 và y = 4

D. x = 6 và y = −5

Bài 86. Cho 2 số phức z1 và z2 thỏa mãn phương trình z1 z2 = 0. Nhận xét nào sau đây là đúng ?
A. Phương trình tồn tại nghiệm phức z1 , z2 thỏa mãn z1 6= 0 và z2 6= 0
B. Phương trình tương đương với z1 = 0 hoặc z2 = 0
C. Phương trình vô nghiệm vì không có phép chia cho 0
D. Phương trình tương đương với z1 = 0 và z2 = 0
Bài 87. Cho số√phức z1 = 3 − 4i và z2√= −4 + 7i. Tìm modulus
√ của số phức z = z1 + z2√
A. |z| = 2 10
B. |z| = 10
C. |z| = 7
D. |z| = 4 2
Bài 88. Cho số phức z =

3− 2
A.
2
Bài 89. Tính



1
2 + 3i và w =
. Tìm phần ảo của zw.
1+i


5− 2
5−3 2
B.
C.
2
2


1− 2
D.
2

(1 + i)17
(1 − i)16

A. 1 + i

B. −1 − i

C. −1 + i

Bài 90. Tìm modulus
của số phức z = √
2 − 5i.

A. |z| = 17
B. |z| = 9 2

C. |z| =

D. 1 − i


29

D. |z| =

Bài 91. Tìm phần thực của số phức z = (1 + i)2017 − (1 − i)2017
2017
A. e2
B. 0
C. 22017
Bài 92. Cho các số phức z1 và z2 thỏa mãn
là đúng ?
A. 10z1 − 17z2 = 46 + 5i
C. 5z1 − 17z2 = −34 + 4i


31

D. 22018

1 + z1
1 + z2
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z1
2 − z2
B. 5z1 + 17z2 = 10 + 2i
D. 10z1 + 17z2 = 2 − i

Bùi Thế Việt - Trang 9/11

1−i
z + 2i = −3 + i. Tìm phần ảo của z.
Bài 93. Cho số phức z thỏa mãn
1+i
3+i+
z + 2i
37
19
37
19
A. − i
B. −
C. −
D. − i
17
51
17
51
2 − 3i +

Bài 94. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng ?
A. Phần thực của z bằng −2, phần ảo của z bằng −7.
B. Phần thực của z bằng 2, phần ảo của z bằng −7.
C. Phần thực của z bằng 2, phần ảo của z bằng 7.
D. Phần thực của z bằng −2, phần ảo của z bằng 7.
Bài 95. Cho số phức z1 = 2 − 3i và z2 = −1 + i. Tính z1 (2z2 + 1)
A. 3 + 2i
B. 7 + 2i
C. 6 + 9i

D. 4 + 7i

Bài 96. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện
|z − 1 − i| = 2|z − 5 − 2i|
2 
2

7
19
68
7
B. Đường thẳng y =
x
+ y−
=
A. Đường tròn x −
3
3
9
19

2 
2
19
7
68
19
C. Đường thẳng y =
+ y−
=
x
D. Đường tròn x −
7
3
3
9
Bài 97. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức w =
trên hệ trục tọa độ Oxy.
A. Đoạn thẳng AB với A(−1, 0) và B(1, 0).
C. Trục hoành
D. Trục tung
Bài 98. Cho số phức z1 =
A.

15
13

z−1
z+1

B. Đoạn thẳng AB với A(0, −1) và B(0, 1).

4 − 6i
4 + 6i
và z2 =
. Tìm phần thực của số phức w = z1 − 2z2 .
2 − 3i
2 + 3i
12
11
10
B.
C.
D.
13
13
13

Bài 99. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 5 − 3i| = 3.
A. (x + 5)2 + (y − 1)2 = 9
B. (x − 5)2 + (y − 3)2 = 9
C. (x + 2)2 + (y + 1)2 = 9
D. (x − 3)2 + (y + 1)2 = 3
Bài 100. Có bao nhiêu số phức z phân biệt thỏa mãn z 3 − 3 (1 + i) z 2 + 6iz + 1 − 2i = 0 ?
A. 4
B. 3
C. 2
D. 1
1−i
1+i
Bài 101. Tìm modulus của số phức z =
+
.
2 + 3i 2 − 5i
r
20
5
2
A. |z| =
B. |z| =
C. |z| =
377
13
13

r
D. |z| =

20
37

5iz + i
. Nhận xét nào sau đây là sai ?
z+1
i−w
A. Nếu |z| = 1 thì |w − 5i| = |w − i|
B. z =
w − 5i
C. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y = 3
5
D. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y =
2

Bài 102. Cho số phức w và z thỏa mãn w =

Bùi Thế Việt - Trang 10/11

Bài 103. Một acgumen của số phức z 6= 0 là φ thì một acgumen của
A. 2φ + π

B. −2φ

C. −φ2

√ !10
1 + 3i
Bài 104. Tìm modulus của số phức z =
2−i
1024
1
B. |z| =
C. |z| = 32
A. |z| =
32
3125

1

z2
D. −φ2 +

D. |z| =

π
2

3125
1024

Bài 105. Cho số phức z = 5 − 4i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 5, phần ảo bằng −4.
B. Phần thực bằng 5, phần ảo bằng 4.
C. Phần thực bằng 5, phần ảo bằng 4i.
D. Phần thực bằng 5, phần ảo bằng −4i.

Bùi Thế Việt - Trang 11/11

CASIO LUYỆN THI THPT QUỐC GIA
ĐỀ TỰ LUYỆN
(Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017
Môn: TOÁN HỌC
Chuyên đề: Số phức
Đề số 26

Họ và tên : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Facebook : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bài 1. Biết cos5 x = a cos 5x + b sin 3x + c cos x với a, b, c là các số thực. Tính a − b + c.
5
5
1
3
B.
C.
D.
A.
8
16
8
16
2 − 3i
và z2 = 4 + i. Tính độ dài đoạn thẳng
1−i

Bài 2. Gọi A, B là điểm biểu diễn của số phức z1 =
AB.

3
2

A. AB = √

B. AB =

3√
2
5

1√
2
3

C. AB =

Bài 3. Tìm phần thực của số phức z = (1 + i)2017 − (1 − i)2017
2017
A. 22018
B. e2
C. 0
1+i
1−i
+
.
Bài 4. Tìm modulus của số phức z =
r
r2 + 3i 2 − 5i
5
20
20
A. |z| =
B. |z| =
C. |z| =
37
377
13
Bài 5. Cho các số phức z1 và z2 thỏa mãn

2
3

D. AB = √

D. 22017

2
13

D. |z| =

1 + z1
1 + z2
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z1
2 − z2

là đúng ?
A. 10z1 + 17z2 = 2 − i B. 10z1 − 17z2 = 46 + 5i
C. 5z1 + 17z2 = 10 + 2i D. 5z1 − 17z2 = −34 + 4i

Bài 6. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|.
A. Đường thẳng y = −x + 3
B. Đường thẳng y = −4x + 1
C. Đường thẳng y = −5x + 3
D. Đường thẳng y = −3x + 4
Bài 7. Có bao nhiêu số phức z phân biệt thỏa mãn z 3 − 3 (1 + i) z 2 + 6iz + 1 − 2i = 0 ?
A. 1
B. 4
C. 3
D. 2
Bài 8. Cho các số phức z và w thỏa mãn zw 6= 1 và |z| = 1 hoặc |w| = 1. Cho A =
|A|
A. |A| = 2

B. |A| = 1

C. |A| =

1
2

z−w
. Tính
1 − zw

D. |A| =

3
2



n
n
Bài 9. Tìm các số hữu tỷ n sao cho − 3 + i + − 3 − i = 0
6 + 3k
3 − 6k
A. n =
với k ∈ Z
B. n =
với k ∈ Z
5
5
3 + 6k
6 − 3k
C. n =
với k ∈ Z
D. n =
với k ∈ Z
5
5

Bùi Thế Việt - Trang 1/11

5iz + i
. Nhận xét nào sau đây là sai ?
z+1
5
A. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y =
2
i−w
B. Nếu |z| = 1 thì |w − 5i| = |w − i|
C. z =
w − 5i
D. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y = 3

Bài 10. Cho số phức w và z thỏa mãn w =

Bài 11. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z| = |z − 6i|.
A. Đường thẳng y = 1
B. Đường thẳng x = 1
C. Đường thẳng x = 3
D. Đường thẳng y = 3

12
Bài 12. Tính Argument của số phức z = − 3 + i .
5

1
B. arg(z) = 0
C. arg(z) =
D. arg(z) =
A. arg(z) =
4096
6
6
Bài 13. Cho các
z2 .
√ số phức z1 = 5 − 3i và
√ z2 = 4 + i. Tìm modulus√của số phức z = z1 + √
A. |z| = 5 13
B. |z| = 58
C. |z| = 13 5
D. |z| = 85
π
Bài 14. Cho số phức z có |z| = 2 và arg(z) = − . Tính u−1 .
6



1
1
3 1
3
3
− i
B.
+
i
C.

i
A.
4
4
4
4
4
4


3 1
D.
+ i
4
4



u3
Bài 15. Cho 2 số phức u = 1 + 3i và v = 3 + i. Tính 4 .
v √



1
3
1
3
1
3
1
3
A.
+
i
B.
+
i
C.

i
D.

i
4
4
2
2
2
2
4
4


π
z−6
= .
Bài 16. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
z−2
4

A. Đường tròn đường kính 4√2 thuộc góc phần tư thứ hai
B. Đường tròn đường kính 2√2 thuộc góc phần tư thứ hai
C. Đường tròn đường kính 2√2 thuộc góc phần tư thứ nhất
D. Đường tròn đường kính 4 2 thuộc góc phần tư thứ nhất
Bài 17. Cho số phức z = 5 − 4i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 5, phần ảo bằng −4i.
B. Phần thực bằng 5, phần ảo bằng −4.
C. Phần thực bằng 5, phần ảo bằng 4.
D. Phần thực bằng 5, phần ảo bằng 4i.
Bài 18. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với a, b ∈ Z. Cho x, y
là 2 số nguyên Gaussian. Khi đó thương phép chia Euclid của x cho y là một số nguyên
x
Gaussian z sao cho z gần nhất khi biểu diễn trên hệ trục tọa độ. Tìm thương phép chia
y
10 + 9i
Euclid
4 − 7i
A. i
B. 2i
C. −1 + i
D. −1 + 2i
1
2 − 5i
1
7
A. z =
− i
29 29

Bài 19. Tính z =

B. z =

2
5
± i
29 29

C. z =

1
7
+ i
29 29

D. z =

2
5
+ i
29 29

Bùi Thế Việt - Trang 2/11

Bài 20. Nhà toán học Rafael Bombelli (1526-1572) đã tình cờ phát hiện ra số phức khi nghiên cứu
phương trình bậc 3. Ông cho rằng phương trình x3 − 3x + 1 = 0 tồn tại nghiệm
p

3
−4 + 4 −3
2
+p
A=

3
2
−4 + 4 −3
Nhà toán học Abraham de Moivre (1667-1754) phát hiện ra định lý :
(cos θ + i sin θ)n = cos nθ + i sin nθ
Sử dụng định lý Moivre, hãy rút gọn biểu thức A.



− i sin
B. A = 2 cos
A. A = cos
9
9
9


+ i sin
D. A = cos
9
9
Bài 21. Cho số phức z1 = 2 − 3i và z2 = −1 + i. Tính z1 (2z2 + 1)
A. 4 + 7i
B. 3 + 2i
C. 7 + 2i
1
Bài 22. Một acgumen của số phức z 6= 0 là φ thì một acgumen của 2 là
z
π
2
A. −φ +
B. 2φ + π
C. −2φ
2

C. A = 2 sin


9

D. 6 + 9i

D. −φ2

Bài 23. Với mọi số phức z, ta có |z + 1|2 bằng
A. zz + 1
B. zz + z + z + 1

C. |z| + 2 |z| + 1

D. z + z + 1

Bài 24. Tìm số phức z thỏa mãn z 2 + 4z + 13 = 0.
A. z = −4 ± 6i
B. z = 2 ± 3i

C. z = −2 ± 3i

D. z = 4 ± 6i

2

Bài 25. Số phức
nào dưới đây thỏa mãn z 2 = 1 + i.
r z√
r

1+ 2
1
1+ 2
1
A. z =
−p
B. z =
+p
√ i
√ i
2
2
2
+
2
2
2
+
2
2
r
r


3+ 2
2
3+ 2
2
D. z =
C. z =
−p
+p
√ i
√ i
2
2
3+ 2
3+ 2
Bài 26. Gọi z1 , z2 , z3 , z4 , z5 , z6 là 6 nghiệm phức của phương trình z 6 + 8 = 0. Tính |z1 | + |z2 | + |z3 | +
|z
√4 | + |z5 | + |z6 |.



A. 2 3
B. 6 2
C. 6 3
D. 3 2


z
π
Bài 27. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
= .
z − 4i
2
A. Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất
B. Nửa đường tròn bán kính 2 tâm (−2, 0) thuộc góc phần tư thứ tư
C. Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất
D. Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư
Bài 28. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z+
thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.
22 √
3√
22 √
A. e =
43
B. e =
43
C. e =
41
25
25
25

D. e =

1
z

3√
41
25

Bùi Thế Việt - Trang 3/11


5


cos
+ i sin
17
17
Bài 29. Tìm phần ảo của số phức z = 
3 .


cos
− i sin
17
17
A. 1
B. 0
C. −1

D. 2

3(z + 2)
= 5 − 2i. Khi đó giá trị của z là :
z + 2i
B. z = 5 − i
C. z = 3 + 2i
D. z = 3 − 2i

Bài 30. Cho số phức z thỏa mãn
A. z = 5 + i

Bài 31. Cho 2 số phức z1 , z2 có |z1 | = 8, |z2 | =
A. −3 + 3i

B. −16 + 4i

1
π

z1
và arg(z1 ) = − , arg(z2 ) =
. Tính z1 z2 + .
2
4
4
z2
C. −3 + 4i
D. −16 + 3i

Bài 32. Cho 2 số phức z1 và z2 thỏa mãn phương trình z1 z2 = 0. Nhận xét nào sau đây là đúng ?
A. Phương trình tương đương với z1 = 0 và z2 = 0
B. Phương trình tồn tại nghiệm phức z1 , z2 thỏa mãn z1 6= 0 và z2 6= 0
C. Phương trình tương đương với z1 = 0 hoặc z2 = 0
D. Phương trình vô nghiệm vì không có phép chia cho 0
3
Bài 33. Cho √
z1 , z2 , z3 là ba nghiệm phức của phương trình z√
+ 8 = 0. Tính |z1 | + |z2 | + |z3 |.
A. 2 + 2 3
B. 3
C. 2 + 3
D. 6

Bài 34. Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z là
A. Tập hợp các số phức không phải số ảo
B. Tập hợp các số thực dương
C. Tập hợp các số thực không âm
D. Tập hợp các số thực
Bài 35. Biết z = 5 − 2i là nghiệm của phương trình z 3 + (−5 + 2i) z 2 + 4z + 8i − 20 = 0. Tìm các
nghiệm còn lại của phương trình trên.


D. z = ± 5i
A. z = ±2i
B. z = ±i
C. z = 2 ± 5i
Bài 36. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé nhất m và giá trị lớn nhất M của |z − i| là
A. m = 0, M = 1

B. m = 0, M = 2

C. m = 0, M =


2

D. m = 1, M = 2

Bùi Thế Việt - Trang 4/11

Bài 37. Gọi z1 , z2 , z3 , z4 , z5 là 5 nghiệm phức của phương trình z 5 = 1 + i. Biểu diễn 5 nghiệm này
trên hệ trục tọa độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của
ngũ giác đều đó.

s
A.

√ √
3− 5 52
2

s
B.

√ √
3+ 5 52
2

s
C.

√ √
5+ 5 52
2

s
D.

5−

√ √
5 52
2

Bài 38. Tìm modulus
của số phức z = √
(2 − i) (1 − 3i).


A. |z| = 5 2
B. |z| = 2 7
C. |z| = 2 5

D. |z| = 4 2

(1 + i)17
Bài 39. Tính
(1 − i)16
A. 1 − i

D. −1 + i

B. 1 + i

C. −1 − i

(1 + i)4
.
(1 + 6i) (2 − 7i)
4
4
2
A. |z| = √ √
B. |z| = √ √
C. |z| = √ √
37 53
46 53
37 53
√ !10
1 + 3i
Bài 41. Tìm modulus của số phức z =
2−i
3125
1
1024
A. |z| =
B. |z| =
C. |z| =
1024
32
3125



Bài 40. Tính |z| với z =

D. |z| = √

2

46 53

D. |z| = 32

Bài 42. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức w =
trên hệ trục tọa độ Oxy.
A. Trục tung
B. Đoạn thẳng AB với A(−1, 0) và B(1, 0).
C. Đoạn thẳng AB với A(0, −1) và B(0, 1).
D. Trục hoành

z−1
z+1

Bài 43. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 6| = 6|z + 6 − 9i|.
A. Đường tròn tâm (−12, 10) bán kính 12
B. Đường tròn tâm (−12, 10) bán kính 10
C. Đường tròn tâm (−10, 12) bán kính 10
D. Đường tròn tâm (12, −10) bán kính 12
Bài 44. Biết z = 3 − 2i thỏa mãn phương trình z 4 − 6z 3 + 18z 2 + pz + 65 = 0. Tìm p.
A. p = 14
B. p = −21
C. p = −30
D. p = 0

Bùi Thế Việt - Trang 5/11

Bài 45. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai ?
A. 2u − 3v = 13 − 16i B. u − v = 5 − 7i
C. 3u − v = 9 + 9i
D. u + v = −1 − 3i
Bài 46. Kết luận nào sau đây là đúng ?
A. |z1 + z2 | < |z1 | + |z2 |
C. |z1 + z2 | > |z1 | + |z2 |

B. |z1 + z2 | ≤ |z1 | + |z2 |
D. |z1 + z2 | ≥ |z1 | + |z2 |

Bài 47. Cho số phức z thỏa mãn |z| = 1 và z 2n 6= −1 với mọi n là số nguyên dương. Nhận xét nào
zn
sau đây là đúng khi nói về số phức w =
?
1 + z 2n
A. Phần ảo của w bằng 0
B. Tập hợp điểm biểu diễn của w là trục
hoành
1
C. w là số thuần ảo
D. |w| =
2
1 + z2
1 + z1
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z2
2 − z1



2 26
2 13
13
B. |z1 + z2 | =
C. |z1 + z2 | =
D. |z1 + z2 | =
11
11
22

Bài 48. Cho các số phức z1 và z2 thỏa mãn
là đúng ? √
A. |z1 + z2 | =

13
11

Bài 49. Tìm phần ảo của số phức z =
A. −3

26
+ i69
−3 + 2i

B. 3

C. −6

D. 6

Bài 50. Gọi x1 , x2 là 2 nghiệm phức của phương trình tan2 t · x2 + tan t · x + 1 = 0 với t là số thực
thỏa mãn tan t 6= 0. Tính xn1 + xn2 .
πn
2πn
cosn t
B. xn1 + xn2 = 2 cos
cosn t
A. xn1 + xn2 = 2 cos
3
3
2πn
πn
C. xn1 + xn2 = cos
cosn t
D. xn1 + xn2 = cos
cosn t
3
3
Bài 51. Tìm modulus
của số phức z =√2 − 5i.

A. |z| = 31
B. |z| = 17



C. |z| = 9 2

D. |z| =


29

Bài 52. Tính√tổng tất cả các nghiệm √
của phương trình z 4 + 3z 2 − 28 = 0 trên trường số phức.
A. 4 + 2 7i
B. 4 − 2 7i
C. 0
D. 4
Bài 53. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức
1 + 3i
w=
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
z+i
3√
4√
3√
4√
A. r =
10
B. r =
5
C. r =
14
D. r =
7
8
5
7
7

1
Bài 54. Cho số phức z = 2 + 3i và w =
. Tìm phần ảo của zw.
1+i




1− 2
3− 2
5− 2
5−3 2
A.
B.
C.
D.
2
2
2
2
1−i
z + 2i = −3 + i. Tìm phần ảo của z.
Bài 55. Cho số phức z thỏa mãn
1+i
3+i+
z + 2i
19
37
19
37
A. − i
B. − i
C. −
D. −
51
17
51
17
2 − 3i +

Bùi Thế Việt - Trang 6/11

Bài 56. Tìm tất cả giá trị của m để phương trình 2z 2 − (3 + 8i)z − m − 4i = 0 có một nghiệm thực.
A. m = −3

C. m = −4

B. m = 2

D. m = 1

Bài 57. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z−
thuộc một đường ellipse. Tìm tiêu cự của ellipse.
A. 2
B. 8
C. 4
2 + 3i
4 − 5i
7
22
A. z =
+ i
41 41

i
z

D. 6

Bài 58. Tính z =

B. z = −

3
23
+ i
43 43

C. z = −

7
22
+ i
41 41

D. z =

3
23
+ i
43 43

Bài 59. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
w =√(1 − 3i)z + i − 1 thuộc √
một đường tròn. Tìm bán√kính r của đường tròn đó.

B. r = 10
C. r = 2 5
D. r = 2 10
A. r = 5
Bài 60. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là đúng ?
v
u
A.
= 5 + 7i
B. u2 = 21 − 20i
C. uv = 4 + 19i
D.
= 5 + 7i
u
v
Bài 61. Cho số phức z thỏa mãn |z + 1| = 2|z − i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc
một đường
tròn. Tìm bán kính
√ r của đường tròn đó. √


5 11
3 7
17
23
B. r =
C. r =
D. r =
A. r =
4
3
7
13
Bài 62. Cho số phức z =

(1 + 2i) (1 + i)
. Kết luận nào sau đây là đúng khi nói về argument của số
−2 − 3i

phức z.
A. arg(z) = 0
B. arg(z) > 0
D. arg(z) không xác định

C. arg(z) < 0

Bài 63. Phần thực và phần ảo của số phức z = (1 + 2i)2 là :
A. Phần thực bằng 3, phần ảo bằng −4
B. Phần thực bằng 3, phần ảo bằng 4
C. Phần thực bằng −3, phần ảo bằng 4
D. Phần thực bằng −3, phần ảo bằng −4

2 
2
a + bi
a − bi
Bài 64. Cho z =
+
. Khẳng định nào sau đây là đúng ?
a − bi
a + bi

A. z = z|z|
B. z = z
C. zz = |z|
D. |z| = a2 + b2
√ 9
Bài 65. Tìm phần thực của số phức z = 1 + 3i



A. 128 5
B. 256 3
C. 256 2
D. 256
z
Bài 66. Một acgumen của số phức z 6= 0 là φ thì một acgumen của

1+i
π
π
π
A. −φ +
B. −φ −
C. φ +
D. φ − π
4
4
2

Bùi Thế Việt - Trang 7/11


x + yz = 2
Bài 67. Cho các số phức x, y, z thỏa mãn y + zx = 2 . Kết luận nào sau đây là đúng ?

z + xy = 3
A.
B.
C.
D.

Tồn tại các số phức (x, y, z) = (1 + 2i, 1 − 2i, 1) thỏa mãn bài toán.
Tồn tại các số phức (x, y, z) = (1 + i, 1 − i, 1) thỏa mãn bài toán.
Không tồn tại các số phức x, y, z thỏa
√ toán.
√ mãn bài

Tồn tại các số phức (x, y, z) = 1 + 2i, 1 − 2i, 1 thỏa mãn bài toán.

Bài 68. Cho số phức z1 =
A.

10
13

Bài 69. Tính i2017
A. −1

4 + 6i
4 − 6i
và z2 =
. Tìm phần thực của số phức w = z1 − 2z2 .
2 − 3i
2 + 3i
15
12
11
B.
C.
D.
13
13
13
B. −i

C. 1

D. i

Bài 70. Cho số phức z = 3 − 7i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 3, phần ảo bằng 7.
B. Phần thực bằng 3, phần ảo bằng −7i.
C. Phần thực bằng 3, phần ảo bằng −7.
D. Phần thực bằng 3, phần ảo bằng 7i.
Bài 71. Tập hợp điểm biểu diễn của số phức z trên hệ trục tọa độ Oxy thỏa mãn arg(z −1+i) = −
là :
A. Nửa đường tròn bán kính 1
C. Đường tròn bán kính 1
Bài 72. Cho số phức z =
A. A =

24 19
− i
25 25

B. Đường thẳng y = −x với x > 1
D. Đường thẳng y = −x với x ≥ 1

1+i
1+i
. Tính A = z 2 +
2−i
z
42 19
42 19
B. A =
+ i
C. A =
− i
25 25
25 25

Bài 73. Tìm phần thực của số phức z = ee
A. <(z) = ee cos 1 sin (e sin 1)
C. <(z) = ee sin 1 cos (e cos 1)

π
4

D. A = −

24 19
− i
25 25

1+i

B. <(z) = ee sin 1 sin (e cos 1)
D. <(z) = ee cos 1 cos (e sin 1)

Bài 74. Cho số phức z thỏa mãn |z + 2 − 3i| = 4. Tập hợp các điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Elip tiêu cự 4
B. Đường tròn đường kính 8
C. Elip tiêu cự 8
D. Đường tròn đường kính 4
Bài 75. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị nhỏ nhất của |z|.
A. 10
B. 16
C. 12
D. 9



π
π
2 cos
+ i sin
12
12 .
Bài 76. Rút gọn 


2 cos
+ i sin
6
6
1 1
1 1
1 1
1 1
A. − − i
B. − + i
C.
− i
D.
+ i
2 2
2 2
2 2
2 2

Bài 77. Gọi A là điểm biểu diễn số phức z = 3 − i trên hệ trục tọa độ Oxy. Khi đó độ dài đoạn
thẳng OA là :


A. 3
B. 2 2
C. 2
D. 1

Bùi Thế Việt - Trang 8/11

x
y
+
= 2 + 4i. Tính x + y.
1+i 2−i
A. x + y = 14
B. x + y = 8
C. x + y = −2
D. x + y = 6


Bài 79. Cho số phức z thỏa mãn z 2 +
3 + i z + 1 = 0. Modulus của z là :
p
p
p
p




A. |z| = 3 + 2
B. |z| = 2 + 3
C. |z| = 2 − 3
D. |z| = 3 − 2

Bài 78. Cho các số thực x, y sao cho

Bài 80. Tính i (1 + i) (1 − i)2 .
A. 5 − 3i
B. 2 + 2i

C. 4 + 6i

D. 7 − 12i

π
Bài 81. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg(z − 2) = .
3


A. Đường thẳng y = √3x + 2√3 thuộc góc phần tư thứ nhất
B. Đường thẳng y = √3x + 2√3 thuộc góc phần tư thứ hai
C. Đường thẳng y = √3x − 2√3 thuộc góc phần tư thứ hai
D. Đường thẳng y = 3x − 2 3 thuộc góc phần tư thứ nhất
Bài 82. Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của z, 2z, z, iz trên hệ
trục tọa độ Oxy. Nhận xét nào sau đây là đúng ?
\
A. Oy là phân giác của góc BOD
B. OB và OC đối xứng nhau qua Ox
C. OC vuông góc với OA
D. OB vuông góc với OD
Bài 83. Cho số phức z thỏa mãn 2<(z) − 3=(z) = 6 với <(z), =(z) là phần thực, phần ảo của z.
Khi đó giá trị nhỏ nhất của |z| là :
5
6
8
7
B. √
C. √
D. √
A. √
13
13
13
13
Bài 84. Số phức√
z nào dưới đây thỏa mãn z 2 + z + 1 = 0
5
3
i
B. Không có số phức z nào thỏa mãn.
A. z = +
2
2√

3
1
5
1
i
D. z = −
i
C. z = − −
2
2
2
2
Bài 85. Cho iz 3 + z 2 − z + i = 0.
√Khi đó giá trị của |z| là√:
A. 2
B. 5
C. 2

D. 1

Bài 86. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
2016 + 2017i
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
w=
z
3√
1√
1√
3√
A. r =
8132545
B. r =
1626509
C. r =
8132545
D. r =
1626509
2
2
2
2
Bài 87. Cho số√phức z1 = 3 − 4i và z2 √
= −4 + 7i. Tìm modulus
2
√ của số phức z = z1 + z√
A. |z| = 4 2
B. |z| = 2 10
C. |z| = 10
D. |z| = 7
Bài 88. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng ?
A. Phần thực của z bằng −2, phần ảo của z bằng 7.
B. Phần thực của z bằng −2, phần ảo của z bằng −7.
C. Phần thực của z bằng 2, phần ảo của z bằng −7.
D. Phần thực của z bằng 2, phần ảo của z bằng 7.

Bùi Thế Việt - Trang 9/11

Bài 89. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện
|z − 1 − i| = 2|z − 5 − 2i|

2 
2

2 
2
19
7
68
7
19
68
A. Đường tròn x −
+ y−
=
B. Đường tròn x −
+ y−
=
3
3
9
3
3
9
19
7
x
D. Đường thẳng y =
x
C. Đường thẳng y =
19
7
Bài 90. Cho f (z) = z 3 + bz 2 + cz − 75 với b, c ∈ R. Biết f (−4 + 3i) = 0. Tìm b, c.
A. b = 3 và c = 3
B. b = 5 và c = 1
C. b = 2 và c = 4
D. b = 4 và c = 2
Bài 91. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị lớn nhất của |z|.
A. 9
B. 12
C. 16
D. 10
√ n
Bài 92. Tìm điều kiện của số nguyên dương n để zn = 1 + 3i là số thực.
A. n chia cho 3 dư 2
B. n chia hết 3
C. n chia cho 3 dư 1
D. n chia cho 4 dư 1
2 − 3i
.
Bài 93. Tìm modulus của số phức z =
r
√3 − i
13
13
A. |z| =
B. |z| =
10
10



r

10
C. |z| =
13

D. |z| =

10
13

Bài 94. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thỏa mãn

.
arg(z + 3 + 2i) =
4
A. Một tia
B. Một đường tròn
C. Một đoạn thẳng
D. Một đường thẳng

Bài 95. Biểu diễn số phức z = 4 3 − 4i dưới dạng lượng giác là :
−π
−π
−π
−π
A. z = 8 cos
+ 8i sin
B. z = 8 sin
+ 8 cos
6
6
6
6
−π
−π
−π
−π
+ 8i cos
D. z = 8 cos
+ 8 sin
C. z = 8 sin
6
6
6
6
Bài 96. Cho số phức z = cos θ + i sin θ. Tính z n +
A. 2 sin nθ

B. 2 sin (n − 1) θ

1
với n là số nguyên dương.
zn
C. 2 cos (n − 1) θ
D. 2 cos nθ

Bài 97. Tìm các số thực x, y thỏa mãn
2x + 5iy − 3ix − 4y = 16 − 21i

A. x = 6 và y = −5

B. x = −3 và y = 2

3−z
=2−i
1 + i − 2z
2
3
3
3
A. z = −
+ i
B. z = −
+ i
13 13
13 13

10
1 − 2i
.
Bài 99. Tìm phần thực của
1−i
779
779
A. −
B.
8
32

C. x = 2 và y = −3

D. x = −7 và y = 4

Bài 98. Tìm số phức z sao cho

C. z = −

C. −

237
8

2
2
+ i
13 13

D. z = −

D.

3
2
+ i
13 13

237
32

Bùi Thế Việt - Trang 10/11

Bài 100. Cho số phức z thỏa mãn |z − 2i| = |z + 2|. Tập hợp điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Đường tròn bán kính 1
B. Parabol tiếp xúc đường thẳng y = −x
C. Ellipse tiêu cự 1
D. Đường thẳng y = −x
Bài 101. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức w =
A. Phần thực của w là −
C. Phần thực của w là

3
4

6
5

B. Phần ảo của w là −
D. Phần ảo của w là

1
4

z−1
z−2

2
5

Bài 102. Cho số phức z thỏa mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức
w = (4 − 3i)z 2 − 4 − 2i trên hệ tọa độ Oxy thuộc một đường tròn. Tìm tâm I của đường
tròn đó.
A. I(2, −4)
B. I(−2, −4)
C. I(−2, 4)
D. I(−4, −2)

Bài 103. Tính Argument của số phức z = 3 − 2 + i.

11π


A. arg(z) =
B. arg(z) =
C. arg(z) =
D. arg(z) =
12
12
7
7
Bài 104. Phương trình z 3 − (n + i)z + m + 2i = 0 có 3 nghiệm phức với n, m là các hằng số thực.
Tìm m để modulus của tích các nghiệm phức bằng 5.
A. m = −2
B. m = 1 hoặc m = −2
C. m = 1 hoặc m = −1
D. m = 1
Bài 105. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 5 − 3i| = 3.
A. (x − 3)2 + (y + 1)2 = 3
B. (x + 5)2 + (y − 1)2 = 9
C. (x − 5)2 + (y − 3)2 = 9
D. (x + 2)2 + (y + 1)2 = 9

Bùi Thế Việt - Trang 11/11

CASIO LUYỆN THI THPT QUỐC GIA
ĐỀ TỰ LUYỆN
(Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017
Môn: TOÁN HỌC
Chuyên đề: Số phức
Đề số 27

Họ và tên : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Facebook : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bài 1. Biểu diễn số phức z = 4 3 − 4i dưới dạng lượng giác là :
−π
−π
−π
−π
A. z = 8 sin
+ 8 cos
B. z = 8 cos
+ 8i sin
6
6
6
6
−π
−π
−π
−π
C. z = 8 sin
+ 8i cos
D. z = 8 cos
+ 8 sin
6
6
6
6
Bài 2. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức w =
2
5
3
C. Phần thực của w là
4

A. Phần ảo của w là −

B. Phần thực của w là −
D. Phần ảo của w là

1
4

z−1
z−2

6
5

Bài 3. Có bao nhiêu số phức z phân biệt thỏa mãn z 3 − 3 (1 + i) z 2 + 6iz + 1 − 2i = 0 ?
A. 4
B. 1
C. 3
D. 2
Bài 4. Gọi A, B là điểm biểu diễn của số phức z1 =
AB.
A. AB =

3√
2
5

3
2

B. AB = √

Bài 5. Cho các số phức z1 và z2 thỏa mãn

2 − 3i
và z2 = 4 + i. Tính độ dài đoạn thẳng
1−i
C. AB =

1√
2
3

2
3

D. AB = √

1 + z2
1 + z1
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z1
2 − z2

là đúng ?
A. 10z1 − 17z2 = 46 + 5i
B. 10z1 + 17z2 = 2 − i
C. 5z1 + 17z2 = 10 + 2i D. 5z1 − 17z2 = −34 + 4i
2 + 3i
4 − 5i
3
23
A. z = −
+ i
43 43

Bài 6. Tính z =

7
22
+ i
41 41
π
Bài 7. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg(z − 2) = .
3


A. Đường thẳng y = √3x + 2√3 thuộc góc phần tư thứ hai
B. Đường thẳng y = √3x + 2√3 thuộc góc phần tư thứ nhất
C. Đường thẳng y = √3x − 2√3 thuộc góc phần tư thứ hai
D. Đường thẳng y = 3x − 2 3 thuộc góc phần tư thứ nhất
B. z =

7
22
+ i
41 41

C. z = −

D. z =

3
23
+ i
43 43

Bài 8. Biết cos5 x = a cos 5x + b sin 3x + c cos x với a, b, c là các số thực. Tính a − b + c.
5
3
5
1
A.
B.
C.
D.
16
8
8
16

Bùi Thế Việt - Trang 1/11

Bài 9. Cho số phức z =

3− 2
A.
2



1
2 + 3i và w =
. Tìm phần ảo của zw.
1+i


1− 2
5− 2
B.
C.
2
2


5−3 2
D.
2

Bài 10. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai ?
A. u − v = 5 − 7i
B. 2u − 3v = 13 − 16i C. 3u − v = 9 + 9i
D. u + v = −1 − 3i

x + yz = 2
Bài 11. Cho các số phức x, y, z thỏa mãn y + zx = 2 . Kết luận nào sau đây là đúng ?

z + xy = 3
A.
B.
C.
D.

Tồn tại các số phức (x, y, z) = (1 + i, 1 − i, 1) thỏa mãn bài toán.
Tồn tại các số phức (x, y, z) = (1 + 2i, 1 − 2i, 1) thỏa mãn bài toán.
Không tồn tại các số phức x, y, z thỏa
√ mãn bài
√ toán.

Tồn tại các số phức (x, y, z) = 1 + 2i, 1 − 2i, 1 thỏa mãn bài toán.

Bài 12. Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của z, 2z, z, iz trên hệ
trục tọa độ Oxy. Nhận xét nào sau đây là đúng ?
\
A. OB và OC đối xứng nhau qua Ox
B. Oy là phân giác của góc BOD
C. OC vuông góc với OA
D. OB vuông góc với OD
Bài 13. Cho số phức z thỏa mãn |z − 2i| = |z + 2|. Tập hợp điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Parabol tiếp xúc đường thẳng y = −x
B. Đường tròn bán kính 1
C. Ellipse tiêu cự 1
D. Đường thẳng y = −x
Bài 14. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị lớn nhất của |z|.
A. 12
B. 9
C. 16
D. 10
Bài 15. Cho số phức z thỏa mãn |z| = 1 và z 2n 6= −1 với mọi n là số nguyên dương. Nhận xét nào
zn
?
sau đây là đúng khi nói về số phức w =
1 + z 2n
A. Tập hợp điểm biểu diễn của w là trục
B. Phần ảo của w bằng 0
hoành
1
C. w là số thuần ảo
D. |w| =
2
Bài 16. Cho số phức z = 5 − 4i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 5, phần ảo bằng −4.
B. Phần thực bằng 5, phần ảo bằng −4i.
C. Phần thực bằng 5, phần ảo bằng 4.
D. Phần thực bằng 5, phần ảo bằng 4i.
Bài 17. Cho các
z2 .
√ số phức z1 = 5 − 3i và√z2 = 4 + i. Tìm modulus√của số phức z = z1 + √
A. |z| = 58
B. |z| = 5 13
C. |z| = 13 5
D. |z| = 85
Bài 18. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 6| = 6|z + 6 − 9i|.
A. Đường tròn tâm (−12, 10) bán kính 10
B. Đường tròn tâm (−12, 10) bán kính 12
C. Đường tròn tâm (−10, 12) bán kính 10
D. Đường tròn tâm (12, −10) bán kính 12
π
Bài 19. Cho số phức z có |z| = 2 và arg(z) = − . Tính u−1 .
6



1
3
3 1
1
3
A.
+
i
B.
− i
C.

i
4
4
4
4
4
4


3 1
D.
+ i
4
4
Bùi Thế Việt - Trang 2/11



z−6
Bài 20. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
z−2

A. Đường tròn đường kính 2√2 thuộc góc phần tư thứ hai
B. Đường tròn đường kính 4√2 thuộc góc phần tư thứ hai
C. Đường tròn đường kính 2√2 thuộc góc phần tư thứ nhất
D. Đường tròn đường kính 4 2 thuộc góc phần tư thứ nhất


=

π
.
4

Bài 21. Cho f (z) = z 3 + bz 2 + cz − 75 với b, c ∈ R. Biết f (−4 + 3i) = 0. Tìm b, c.
A. b = 5 và c = 1
B. b = 3 và c = 3
C. b = 2 và c = 4
D. b = 4 và c = 2
Bài 22. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức
1 + 3i
w=
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
z+i
4√
3√
3√
4√
A. r =
5
B. r =
10
C. r =
14
D. r =
7
5
8
7
7
Bài 23. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức w =
trên hệ trục tọa độ Oxy.
A. Đoạn thẳng AB với A(−1, 0) và B(1, 0).
C. Đoạn thẳng AB với A(0, −1) và B(0, 1).

z−1
z+1

B. Trục tung
D. Trục hoành

Bài 24. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thỏa mãn

arg(z + 3 + 2i) =
.
4
A. Một đường tròn
B. Một tia
C. Một đoạn thẳng
D. Một đường thẳng

12
Bài 25. Tính Argument của số phức z = − 3 + i .
1
5

A. arg(z) = 0
B. arg(z) =
C. arg(z) =
D. arg(z) =
4096
6
6

2 
2
a + bi
a − bi
Bài 26. Cho z =
+
. Khẳng định nào sau đây là đúng ?
a − bi
a + bi

A. z = z
B. z = z|z|
C. zz = |z|
D. |z| = a2 + b2
1−i
z + 2i = −3 + i. Tìm phần ảo của z.
Bài 27. Cho số phức z thỏa mãn
1+i
3+i+
z + 2i
37
19
19
37
A. − i
B. − i
C. −
D. −
17
51
51
17
2 − 3i +

Bùi Thế Việt - Trang 3/11

Bài 28. Nhà toán học Rafael Bombelli (1526-1572) đã tình cờ phát hiện ra số phức khi nghiên cứu
phương trình bậc 3. Ông cho rằng phương trình x3 − 3x + 1 = 0 tồn tại nghiệm
p

3
−4 + 4 −3
2
+p
A=

3
2
−4 + 4 −3
Nhà toán học Abraham de Moivre (1667-1754) phát hiện ra định lý :
(cos θ + i sin θ)n = cos nθ + i sin nθ
Sử dụng định lý Moivre, hãy rút gọn biểu thức A.



B. A = cos
− i sin
A. A = 2 cos
9
9
9


+ i sin
D. A = cos
9
9

C. A = 2 sin


9

Bài 29. Cho số phức z thỏa mãn |z + 1| = 2|z − i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc
một√đường tròn. Tìm bán kính
√ r của đường tròn đó. √

3 7
5 11
17
23
A. r =
B. r =
C. r =
D. r =
3
4
7
13
Bài 30. Cho số√phức z1 = 3 − 4i và z2 √
= −4 + 7i. Tìm modulus
2
√ của số phức z = z1 + z√
A. |z| = 2 10
B. |z| = 4 2
C. |z| = 10
D. |z| = 7
Bài 31. Với mọi số phức z, ta có |z + 1|2 bằng
A. zz + z + z + 1
B. zz + 1

2

C. |z| + 2 |z| + 1

D. z + z + 1

Bài 32. Số phức z nào dưới đây thỏa mãn z 2 + z + 1 = 0
A. Không có số phức z nào thỏa mãn.


1
3
C. z = − −
i
2
2


3
5
B. z = +
i
2 √2
1
5
D. z = −
i
2
2

1
với n là số nguyên dương.
zn
A. 2 sin (n − 1) θ
B. 2 sin nθ
C. 2 cos (n − 1) θ
D. 2 cos nθ


n
n
Bài 34. Tìm các số hữu tỷ n sao cho − 3 + i + − 3 − i = 0
3 − 6k
6 + 3k
A. n =
với k ∈ Z
B. n =
với k ∈ Z
5
5
3 + 6k
6 − 3k
C. n =
với k ∈ Z
D. n =
với k ∈ Z
5
5

Bài 33. Cho số phức z = cos θ + i sin θ. Tính z n +

(1 + i)17
Bài 35. Tính
(1 − i)16
A. 1 + i

B. 1 − i

C. −1 − i

D. −1 + i

Bài 36. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z−
thuộc một đường ellipse. Tìm tiêu cự của ellipse.
A. 8
B. 2
C. 4

i
z

D. 6

Bùi Thế Việt - Trang 4/11

Bài 37. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z| = |z − 6i|.
A. Đường thẳng x = 1
B. Đường thẳng y = 1
C. Đường thẳng x = 3
D. Đường thẳng y = 3
Bài 38. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với a, b ∈ Z. Cho x, y
là 2 số nguyên Gaussian. Khi đó thương phép chia Euclid của x cho y là một số nguyên
x
Gaussian z sao cho z gần nhất khi biểu diễn trên hệ trục tọa độ. Tìm thương phép chia
y
10 + 9i
Euclid
4 − 7i
A. 2i
B. i
C. −1 + i
D. −1 + 2i
Bài 39. Phương trình z 3 − (n + i)z + m + 2i = 0 có 3 nghiệm phức với n, m là các hằng số thực.
Tìm m để modulus của tích các nghiệm phức bằng 5.
A. m = 1 hoặc m = −2
B. m = −2
C. m = 1 hoặc m = −1
D. m = 1
√ !10
1 + 3i
Bài 40. Tìm modulus của số phức z =
2−i
3125
1024
1
B. |z| =
C. |z| =
D. |z| = 32
A. |z| =
32
1024
3125
Bài 41. Gọi z1 , z2 , z3 , z4 , z5 , z6 là 6 nghiệm phức của phương trình z 6 + 8 = 0. Tính |z1 | + |z2 | + |z3 | +
|z
√4 | + |z5 | + |z6 |.



A. 6 2
B. 2 3
C. 6 3
D. 3 2


z
π
Bài 42. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
= .
z − 4i
2
A. Nửa đường tròn bán kính 2 tâm (−2, 0) thuộc góc phần tư thứ tư
B. Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất
C. Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất
D. Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư
Bài 43. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 5 − 3i| = 3.
A. (x + 5)2 + (y − 1)2 = 9
B. (x − 3)2 + (y + 1)2 = 3
C. (x − 5)2 + (y − 3)2 = 9
D. (x + 2)2 + (y + 1)2 = 9
Bài 44. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|.
A. Đường thẳng y = −4x + 1
B. Đường thẳng y = −x + 3
C. Đường thẳng y = −5x + 3
D. Đường thẳng y = −3x + 4
Bài 45. Tìm phần thực của số phức z = (1 + i)2017 − (1 − i)2017
2017
A. e2
B. 22018
C. 0

D. 22017

Bài 46. Cho số phức z1 = 2 − 3i và z2 = −1 + i. Tính z1 (2z2 + 1)
A. 3 + 2i
B. 4 + 7i
C. 7 + 2i

D. 6 + 9i

z
Bài 47. Một acgumen của số phức z 6= 0 là φ thì một acgumen của

1+i
π
π
π
A. −φ −
B. −φ +
C. φ +
D. φ − π
4
4
2

Bùi Thế Việt - Trang 5/11

Bài 48. Tìm phần thực của số phức z = 1 +


B. 128 5
A. 256 3

√ 9
3i



C. 256 2

D. 256

3
Bài 49. Cho z1 , z2 , z3 là ba nghiệm phức
√ của phương trình z√+ 8 = 0. Tính |z1 | + |z2 | + |z3 |.
A. 3
B. 2 + 2 3
C. 2 + 3
D. 6

2 − 3i
.
Bài 50. Tìm modulus của số phức z =
r3 − i

13
13
A. |z| =
B. |z| =
10
10



r

10
C. |z| =
13

D. |z| =

10
13

Bài 51. Cho số phức z thỏa mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức
w = (4 − 3i)z 2 − 4 − 2i trên hệ tọa độ Oxy thuộc một đường tròn. Tìm tâm I của đường
tròn đó.
A. I(−2, −4)
B. I(2, −4)
C. I(−2, 4)
D. I(−4, −2)
1+i

Bài 52. Tìm phần thực của số phức z = ee
A. <(z) = ee sin 1 sin (e cos 1)
B. <(z) = ee cos 1 sin (e sin 1)
C. <(z) = ee sin 1 cos (e cos 1)
D. <(z) = ee cos 1 cos (e sin 1)

5


+ i sin
cos
17
17
Bài 53. Tìm phần ảo của số phức z = 
3 .


cos
− i sin
17
17
A. 0
B. 1
C. −1
D. 2

Bài 54. Gọi A là điểm biểu diễn số phức z = 3 − i trên hệ trục tọa độ Oxy. Khi đó độ dài đoạn
thẳng
OA là :


B. 3
C. 2
D. 1
A. 2 2
Bài 55. Cho số phức z = 3 − 7i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 3, phần ảo bằng −7i.
B. Phần thực bằng 3, phần ảo bằng 7.
C. Phần thực bằng 3, phần ảo bằng −7.
D. Phần thực bằng 3, phần ảo bằng 7i.
Bài 56. Cho các số phức z và w thỏa mãn zw 6= 1 và |z| = 1 hoặc |w| = 1. Cho A =
|A|
A. |A| = 1

B. |A| = 2

C. |A| =

1
2

D. |A| =

1
Bài 57. Một acgumen của số phức z 6= 0 là φ thì một acgumen của 2 là
z
π
2
A. 2φ + π
B. −φ +
C. −2φ
2
3−z
=2−i
1 + i − 2z
2
3
B. z = −
+ i
13 13

z−w
. Tính
1 − zw
3
2

D. −φ2

Bài 58. Tìm số phức z sao cho
A. z = −

3
3
+ i
13 13

Bài 59. Kết luận nào sau đây là đúng ?
A. |z1 + z2 | ≤ |z1 | + |z2 |
C. |z1 + z2 | > |z1 | + |z2 |

C. z = −

2
2
+ i
13 13

D. z = −

3
2
+ i
13 13

B. |z1 + z2 | < |z1 | + |z2 |
D. |z1 + z2 | ≥ |z1 | + |z2 |

Bùi Thế Việt - Trang 6/11

(1 + i)4
.
Bài 60. Tính |z| với z =
(1 + 6i) (2 − 7i)
4
4
A. |z| = √ √
B. |z| = √ √
46 53
37 53

C. |z| = √

2

37 53

D. |z| = √

2

46 53

Bài 61. Tập hợp điểm biểu diễn của số phức z trên hệ trục tọa độ Oxy thỏa mãn arg(z −1+i) = −
là :
A. Đường thẳng y = −x với x > 1
C. Đường tròn bán kính 1

B. Nửa đường tròn bán kính 1
D. Đường thẳng y = −x với x ≥ 1



u3
Bài 62. Cho 2 số phức u = 1 + 3i và v = 3 + i. Tính 4 .
v √


1
1
3
3
3
1
+
i
B.
+
i
C.

i
A.
2
2
4
4
2
2
Bài 63. Cho số phức z =

π
4


1
3
D.

i
4
4

(1 + 2i) (1 + i)
. Kết luận nào sau đây là đúng khi nói về argument của số
−2 − 3i

phức z.
A. arg(z) > 0
B. arg(z) = 0
D. arg(z) không xác định
Bài 64. Tìm số phức z thỏa mãn z 2 + 4z + 13 = 0.
A. z = 2 ± 3i
B. z = −4 ± 6i

C. arg(z) < 0

C. z = −2 ± 3i

D. z = 4 ± 6i

Bài 65. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé nhất m và giá trị lớn nhất M của |z − i| là
A. m = 0, M = 2

B. m = 0, M = 1

C. m = 0, M =

1+i
1−i
+
.
Bài 66. Tìm modulus của số phức z =
2
+
3i
2

5i
r
r
20
20
5
A. |z| =
B. |z| =
C. |z| =
377
37
13
Bài 67. Tính i (1 + i) (1 − i)2 .
A. 2 + 2i
B. 5 − 3i


2

D. m = 1, M = 2

D. |z| =

2
13

D. 7 − 12i

C. 4 + 6i

Bài 68. Gọi x1 , x2 là 2 nghiệm phức của phương trình tan2 t · x2 + tan t · x + 1 = 0 với t là số thực
thỏa mãn tan t 6= 0. Tính xn1 + xn2 .
2πn
πn
cosn t
B. xn1 + xn2 = 2 cos
cosn t
A. xn1 + xn2 = 2 cos
3
3
πn
2πn
C. xn1 + xn2 = cos
cosn t
D. xn1 + xn2 = cos
cosn t
3
3
Bài 69. Số phức
nào dưới đây thỏa mãn z 2 = 1 + i.
r z√
r

1+ 2
1
1+ 2
1
A. z =
+p
B. z =
−p
√ i
√ i
2
2
2
+
2
2
2
+
2
2
r
r


3+ 2
2
3+ 2
2
C. z =
−p
D. z =
+p
√ i
√ i
2
2
3+ 2
3+ 2
Bài 70. Tìm modulus
của số phức z =√2 − 5i.

A. |z| = 17
B. |z| = 31



C. |z| = 9 2

D. |z| =


29

Bùi Thế Việt - Trang 7/11

Bài 71. Tìm modulus
của số phức z = √
(2 − i) (1 − 3i).


A. |z| = 2 7
B. |z| = 5 2
C. |z| = 2 5



D. |z| = 4 2

4 − 6i
4 + 6i
và z2 =
. Tìm phần thực của số phức w = z1 − 2z2 .
2 − 3i
2 + 3i
15
10
12
11
A.
B.
C.
D.
13
13
13
13
√ n
Bài 73. Tìm điều kiện của số nguyên dương n để zn = 1 + 3i là số thực.
A. n chia hết 3
B. n chia cho 3 dư 2
C. n chia cho 3 dư 1
D. n chia cho 4 dư 1
Bài 72. Cho số phức z1 =

Bài 74. √
Cho iz 3 + z 2 − z + i = 0. Khi đó giá trị của |z| là√:
A. 5
B. 2
C. 2

D. 1

Bài 75. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện
|z − 1 − i| = 2|z − 5 − 2i|
2 
2

2 
2

19
7
19
68
7
68
B. Đường tròn x −
A. Đường tròn x −
+ y−
=
+ y−
=
3
3
9
3
3
9
19
7
x
D. Đường thẳng y =
x
C. Đường thẳng y =
19
7
√ 
π
π
2 cos
+ i sin
12
12 .
Bài 76. Rút gọn 


+ i sin
2 cos
6
6
1 1
1 1
1 1
1 1
A. − + i
B. − − i
C.
− i
D.
+ i
2 2
2 2
2 2
2 2
Bài 77. Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z là
A. Tập hợp các số thực dương
B. Tập hợp các số phức không phải số ảo
C. Tập hợp các số thực không âm
D. Tập hợp các số thực
Bài 78. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị nhỏ nhất của |z|.
A. 16
B. 10
C. 12
D. 9

Bài 79. Tính Argument của số phức z = 3 − 2 + i.
11π



A. arg(z) =
B. arg(z) =
C. arg(z) =
D. arg(z) =
12
12
7
7

Bùi Thế Việt - Trang 8/11

Bài 80. Gọi z1 , z2 , z3 , z4 , z5 là 5 nghiệm phức của phương trình z 5 = 1 + i. Biểu diễn 5 nghiệm này
trên hệ trục tọa độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của
ngũ giác đều đó.

s
A.

√ √
3+ 5 52
2

s
B.

√ √
3− 5 52
2

s
C.

√ √
5+ 5 52
2

s
D.

5−

√ √
5 52
2

Bài 81. Phần thực và phần ảo của số phức z = (1 + 2i)2 là :
A. Phần thực bằng 3, phần ảo bằng 4
B. Phần thực bằng 3, phần ảo bằng −4
C. Phần thực bằng −3, phần ảo bằng 4
D. Phần thực bằng −3, phần ảo bằng −4
Bài 82. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng ?
A. Phần thực của z bằng −2, phần ảo của z bằng −7.
B. Phần thực của z bằng −2, phần ảo của z bằng 7.
C. Phần thực của z bằng 2, phần ảo của z bằng −7.
D. Phần thực của z bằng 2, phần ảo của z bằng 7.
Bài 83. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z+
thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.
22 √
22 √
3√
43
B. e =
43
C. e =
41
A. e =
25
25
25
26
Bài 84. Tìm phần ảo của số phức z =
+ i69
−3 + 2i
A. 3
B. −3
C. −6
Bài 85. Tính i2017
A. −i

B. −1

Bài 86. Cho 2 số phức z1 , z2 có |z1 | = 8, |z2 | =
A. −16 + 4i

B. −3 + 3i

C. 1

D. e =

1
z

3√
41
25

D. 6
D. i

1
π

z1
và arg(z1 ) = − , arg(z2 ) =
. Tính z1 z2 + .
2
4
4
z2
C. −3 + 4i
D. −16 + 3i

Bài 87. Tìm tất cả giá trị của m để phương trình 2z 2 − (3 + 8i)z − m − 4i = 0 có một nghiệm thực.
A. m = 2

B. m = −3

C. m = −4

D. m = 1

Bài 88. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là đúng ?
v
u
A. u2 = 21 − 20i
B.
= 5 + 7i
C. uv = 4 + 19i
D.
= 5 + 7i
u
v
Bùi Thế Việt - Trang 9/11

1
2 − 5i
5
2
± i
A. z =
29 29

Bài 89. Tính z =

B. z =

1
7
− i
29 29

Bài 90. Cho số phức w và z thỏa mãn w =

C. z =

1
7
+ i
29 29

D. z =

2
5
+ i
29 29

5iz + i
. Nhận xét nào sau đây là sai ?
z+1

A. Nếu |z| = 1 thì |w − 5i| = |w − i|

5
2
D. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y = 3
B. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y =

C. z =

i−w
w − 5i

Bài 91. Biết z = 3 − 2i thỏa mãn phương trình z 4 − 6z 3 + 18z 2 + pz + 65 = 0. Tìm p.
A. p = −21
B. p = 14
C. p = −30
D. p = 0
Bài 92. Cho số phức z thỏa mãn 2<(z) − 3=(z) = 6 với <(z), =(z) là phần thực, phần ảo của z.
Khi đó giá trị nhỏ nhất của |z| là :
7
6
8
5
B. √
C. √
D. √
A. √
13
13
13
13

10
1 − 2i
Bài 93. Tìm phần thực của
.
1−i
779
237
237
779
B. −
C. −
D.
A.
32
8
8
32


Bài 94. Cho số phức z thỏa mãn z 2 +
3 + i z + 1 = 0. Modulus của z là :
p
p
p
p




A. |z| = 2 + 3
B. |z| = 3 + 2
C. |z| = 2 − 3
D. |z| = 3 − 2
Bài 95. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
2016 + 2017i
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
w=
z
1√
3√
1√
3√
A. r =
1626509
B. r =
8132545
C. r =
8132545
D. r =
1626509
2
2
2
2
Bài 96. Biết z = 5 − 2i là nghiệm của phương trình z 3 + (−5 + 2i) z 2 + 4z + 8i − 20 = 0. Tìm các
nghiệm còn lại của phương trình trên.


A. z = ±i
B. z = ±2i
C. z = 2 ± 5i
D. z = ± 5i
Bài 97. Cho 2 số phức z1 và z2 thỏa mãn phương trình z1 z2 = 0. Nhận xét nào sau đây là đúng ?
A. Phương trình tồn tại nghiệm phức z1 , z2 thỏa mãn z1 6= 0 và z2 6= 0
B. Phương trình tương đương với z1 = 0 và z2 = 0
C. Phương trình tương đương với z1 = 0 hoặc z2 = 0
D. Phương trình vô nghiệm vì không có phép chia cho 0
Bài 98. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
w =√(1 − 3i)z + i − 1 thuộc √
một đường tròn. Tìm bán√kính r của đường tròn đó.

A. r = 10
B. r = 5
C. r = 2 5
D. r = 2 10
x
y
Bài 99. Cho các số thực x, y sao cho
+
= 2 + 4i. Tính x + y.
1+i 2−i
A. x + y = 8
B. x + y = 14
C. x + y = −2
D. x + y = 6

Bùi Thế Việt - Trang 10/11

3(z + 2)
= 5 − 2i. Khi đó giá trị của z là :
z + 2i
B. z = 5 + i
C. z = 3 + 2i
D. z = 3 − 2i

Bài 100. Cho số phức z thỏa mãn
A. z = 5 − i

Bài 101. Tính√tổng tất cả các nghiệm √
của phương trình z 4 + 3z 2 − 28 = 0 trên trường số phức.
A. 4 − 2 7i
B. 4 + 2 7i
C. 0
D. 4
Bài 102. Cho số phức z thỏa mãn |z + 2 − 3i| = 4. Tập hợp các điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Đường tròn đường kính 8
B. Elip tiêu cự 4
C. Elip tiêu cự 8
D. Đường tròn đường kính 4
1 + z1
1 + z2
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z2
2 − z1



13
2 13
13
B. |z1 + z2 | =
C. |z1 + z2 | =
D. |z1 + z2 | =
11
11
22

Bài 103. Cho các số phức z1 và z2 thỏa mãn
là đúng ? √
2 26
A. |z1 + z2 | =
11
Bài 104. Cho số phức z =
A. A =

42 19
+ i
25 25

1+i
1+i
. Tính A = z 2 +
2−i
z
24 19
42 19
B. A =
− i
C. A =
− i
25 25
25 25

D. A = −

24 19
− i
25 25

Bài 105. Tìm các số thực x, y thỏa mãn
2x + 5iy − 3ix − 4y = 16 − 21i

A. x = −3 và y = 2

B. x = 6 và y = −5

C. x = 2 và y = −3

D. x = −7 và y = 4

Bùi Thế Việt - Trang 11/11

CASIO LUYỆN THI THPT QUỐC GIA
ĐỀ TỰ LUYỆN
(Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017
Môn: TOÁN HỌC
Chuyên đề: Số phức
Đề số 28

Họ và tên : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Facebook : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bài 1. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 6| = 6|z + 6 − 9i|.
A. Đường tròn tâm (−12, 10) bán kính 10
B. Đường tròn tâm (12, −10) bán kính 12
C. Đường tròn tâm (−10, 12) bán kính 10
D. Đường tròn tâm (−12, 10) bán kính 12
Bài 2. Phương trình z 3 − (n + i)z + m + 2i = 0 có 3 nghiệm phức với n, m là các hằng số thực.
Tìm m để modulus của tích các nghiệm phức bằng 5.
A. m = 1 hoặc m = −2
B. m = 1
C. m = 1 hoặc m = −1
D. m = −2
Bài 3. Cho số phức z = 5 − 4i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 5, phần ảo bằng −4.
B. Phần thực bằng 5, phần ảo bằng 4i.
C. Phần thực bằng 5, phần ảo bằng 4.
D. Phần thực bằng 5, phần ảo bằng −4i.
Bài 4. Có bao nhiêu số phức z phân biệt thỏa mãn z 3 − 3 (1 + i) z 2 + 6iz + 1 − 2i = 0 ?
A. 4
B. 2
C. 3
D. 1
2 − 3i
.
Bài 5. Tìm modulus của số phức z =
3

i
r

13
10
A. |z| =
B. |z| =
10
13

10
C. |z| =
13

D. |z| =

Bài 6. Tính i2017
A. −i

C. 1

D. −1

B. i

Bài 7. Tìm modulus của số phức z =
A. |z| =

1
32

B. |z| = 32



r

13
10

√ !10
1 + 3i
2−i
C. |z| =

1024
3125

D. |z| =

3125
1024

Bài 8. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
w =√(1 − 3i)z + i − 1 thuộc một
√ đường tròn. Tìm bán√kính r của đường tròn√đó.
A. r = 10
B. r = 2 10
C. r = 2 5
D. r = 5
Bài 9. Cho số phức z thỏa mãn |z − 2i| = |z + 2|. Tập hợp điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Parabol tiếp xúc đường thẳng y = −x
B. Đường thẳng y = −x
C. Ellipse tiêu cự 1
D. Đường tròn bán kính 1

Bùi Thế Việt - Trang 1/11

π
Bài 10. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg(z − 2) = .
3


A. Đường thẳng y = √3x + 2√3 thuộc góc phần tư thứ hai
B. Đường thẳng y = √3x − 2√3 thuộc góc phần tư thứ nhất
C. Đường thẳng y = √3x − 2√3 thuộc góc phần tư thứ hai
D. Đường thẳng y = 3x + 2 3 thuộc góc phần tư thứ nhất

x + yz = 2
Bài 11. Cho các số phức x, y, z thỏa mãn y + zx = 2 . Kết luận nào sau đây là đúng ?

z + xy = 3
A. Tồn tại các số phức (x, y, z) = (1 + i,
√1 − i, 1)√thỏa mãn bài toán.
B. Tồn tại các số phức (x, y, z) = 1 + 2i, 1 − 2i, 1 thỏa mãn bài toán.
C. Không tồn tại các số phức x, y, z thỏa mãn bài toán.
D. Tồn tại các số phức (x, y, z) = (1 + 2i, 1 − 2i, 1) thỏa mãn bài toán.


Bài 12. Biểu diễn số phức z = 4 3 − 4i dưới dạng lượng giác là :
−π
−π
−π
−π
A. z = 8 sin
+ 8 cos
B. z = 8 cos
+ 8 sin
6
6
6
6
−π
−π
−π
−π
+ 8i cos
D. z = 8 cos
+ 8i sin
C. z = 8 sin
6
6
6
6
Bài 13. Cho số phức z thỏa mãn 2<(z) − 3=(z) = 6 với <(z), =(z) là phần thực, phần ảo của z.
Khi đó giá trị nhỏ nhất của |z| là :
8
6
7
5
B. √
C. √
D. √
A. √
13
13
13
13
Bài 14. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là đúng ?
u
v
A. u2 = 21 − 20i
B.
= 5 + 7i
C. uv = 4 + 19i
D.
= 5 + 7i
v
u
Bài 15. Gọi A, B là điểm biểu diễn của số phức z1 =
AB.
A. AB =

3√
2
5

2
3

B. AB = √

2 − 3i
và z2 = 4 + i. Tính độ dài đoạn thẳng
1−i
C. AB =

1√
2
3

3
2

D. AB = √

Bài 16. Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của z, 2z, z, iz trên hệ
trục tọa độ Oxy. Nhận xét nào sau đây là đúng ?
A. OB và OC đối xứng nhau qua Ox
B. OB vuông góc với OD
\
C. OC vuông góc với OA
D. Oy là phân giác của góc BOD
Bài 17. Gọi x1 , x2 là 2 nghiệm phức của phương trình tan2 t · x2 + tan t · x + 1 = 0 với t là số thực
thỏa mãn tan t 6= 0. Tính xn1 + xn2 .
πn
πn
A. xn1 + xn2 = 2 cos
cosn t
B. xn1 + xn2 = cos
cosn t
3
3
2πn
2πn
C. xn1 + xn2 = cos
cosn t
D. xn1 + xn2 = 2 cos
cosn t
3
3
Bài 18. Cho 2 số phức z1 , z2 có |z1 | = 8, |z2 | =
A. −16 + 4i

B. −16 + 3i

π

z1
1
và arg(z1 ) = − , arg(z2 ) =
. Tính z1 z2 + .
2
4
4
z2
C. −3 + 4i
D. −3 + 3i

Bùi Thế Việt - Trang 2/11

3−z
=2−i
1 + i − 2z
3
2
B. z = −
+ i
13 13

Bài 19. Tìm số phức z sao cho
A. z = −

3
3
+ i
13 13

C. z = −

2
2
+ i
13 13

Bài 20. Cho số phức z1 = 2 − 3i và z2 = −1 + i. Tính z1 (2z2 + 1)
A. 3 + 2i
B. 6 + 9i
C. 7 + 2i

10
1 − 2i
Bài 21. Tìm phần thực của
.
1−i
237
237
779
B.
C. −
A.
32
32
8

D. z = −

2
3
+ i
13 13

D. 4 + 7i

D. −

779
8

1 + z1
1 + z2
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z2
2 − z1



13
2 13
13
B. |z1 + z2 | =
C. |z1 + z2 | =
D. |z1 + z2 | =
22
11
11

Bài 22. Cho các số phức z1 và z2 thỏa mãn
là đúng ? √
2 26
A. |z1 + z2 | =
11
2 + 3i
4 − 5i
3
23
A. z = −
+ i
43 43

Bài 23. Tính z =

B. z =

3
23
+ i
43 43

C. z = −

7
22
+ i
41 41

D. z =

7
22
+ i
41 41

Bài 24. Cho 2 số phức z1 và z2 thỏa mãn phương trình z1 z2 = 0. Nhận xét nào sau đây là đúng ?
A. Phương trình tồn tại nghiệm phức z1 , z2 thỏa mãn z1 6= 0 và z2 6= 0
B. Phương trình vô nghiệm vì không có phép chia cho 0
C. Phương trình tương đương với z1 = 0 hoặc z2 = 0
D. Phương trình tương đương với z1 = 0 và z2 = 0
Bài 25. Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai ?
A. u − v = 5 − 7i
B. u + v = −1 − 3i
C. 3u − v = 9 + 9i
D. 2u − 3v = 13 − 16i

Bài 26. Gọi A là điểm biểu diễn số phức z = 3 − i trên hệ trục tọa độ Oxy. Khi đó độ dài đoạn
thẳng
OA là :


A. 2 2
B. 1
C. 2
D. 3
z
Bài 27. Một acgumen của số phức z 6= 0 là φ thì một acgumen của

1+i
π
π
π
A. −φ −
B. φ − π
C. φ +
D. −φ +
4
2
4
Bài 28. Cho số phức z thỏa mãn |z + 1| = 2|z − i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc
một√đường tròn. Tìm bán kính
√ r của đường tròn đó. √

17
23
5 11
3 7
A. r =
B. r =
C. r =
D. r =
3
13
7
4
Bài 29. Cho các
2.
√ số phức z1 = 5 − 3i và
√ z2 = 4 + i. Tìm modulus√của số phức z = z1 + z√
A. |z| = 58
B. |z| = 85
C. |z| = 13 5
D. |z| = 5 13
Bài 30. Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức
2016 + 2017i
w=
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
z
1√
3√
1√
3√
A. r =
1626509
B. r =
1626509
C. r =
8132545
D. r =
8132545
2
2
2
2
Bùi Thế Việt - Trang 3/11



u3
Bài 31. Cho 2 số phức u = 1 + 3i và v = 3 + i. Tính 4 .
v √


3
3
3
1
1
1
+
i
B.

i
C.

i
A.
2
2
4
4
2
2
Bài 32. Kết luận nào sau đây là đúng ?
A. |z1 + z2 | ≤ |z1 | + |z2 |
C. |z1 + z2 | > |z1 | + |z2 |


3
1
D.
+
i
4
4

B. |z1 + z2 | ≥ |z1 | + |z2 |
D. |z1 + z2 | < |z1 | + |z2 |

Bài 33. Biết z = 3 − 2i thỏa mãn phương trình z 4 − 6z 3 + 18z 2 + pz + 65 = 0. Tìm p.
A. p = −21
B. p = 0
C. p = −30
D. p = 14
√ n
Bài 34. Tìm điều kiện của số nguyên dương n để zn = 1 + 3i là số thực.
A. n chia hết 3
B. n chia cho 4 dư 1
C. n chia cho 3 dư 1
D. n chia cho 3 dư 2
1
2 − 5i
5
2
± i
A. z =
29 29

Bài 35. Tính z =

B. z =

2
5
+ i
29 29

C. z =

1
7
+ i
29 29

Bài 36. Với mọi số phức z, ta có |z + 1|2 bằng
2
B. z + z + 1
C. |z| + 2 |z| + 1
A. zz + z + z + 1

12
Bài 37. Tính Argument của số phức z = − 3 + i .

5
A. arg(z) = 0
B. arg(z) =
C. arg(z) =
6
6

1
7
− i
29 29

D. z =

D. zz + 1

D. arg(z) =

1
4096

Bài 38. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z+
thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.
3√
22 √
3√
43
B. e =
41
C. e =
41
A. e =
25
25
25

D. e =

1
z

22 √
43
25

Bài 39. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức
1 + 3i
w=
thuộc một đường tròn. Tìm bán kính r của đường tròn đó.
z+i
4√
4√
3√
3√
A. r =
5
B. r =
7
C. r =
14
D. r =
10
5
7
7
8
Bài 40. Biết cos5 x = a cos 5x + b sin 3x + c cos x với a, b, c là các số thực. Tính a − b + c.
5
1
5
3
A.
B.
C.
D.
16
16
8
8
Bài 41. Tìm phần thực của số phức z = (1 + i)2017 − (1 − i)2017
2017
A. e2
B. 22017
C. 0

D. 22018

Bài 42. Cho số phức z thỏa mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức
w = (4 − 3i)z 2 − 4 − 2i trên hệ tọa độ Oxy thuộc một đường tròn. Tìm tâm I của đường
tròn đó.
A. I(−2, −4)
B. I(−4, −2)
C. I(−2, 4)
D. I(2, −4)
Bài 43. Cho số phức z1 =
A.

15
13

4 + 6i
4 − 6i
và z2 =
. Tìm phần thực của số phức w = z1 − 2z2 .
2 − 3i
2 + 3i
11
12
10
B.
C.
D.
13
13
13
Bùi Thế Việt - Trang 4/11

Bài 44. Rút gọn
1
2

1
2

A. − + i

√ 
π
π
2 cos
+ i sin
12
12 .



2 cos
+ i sin
6
6
1 1
B.
+ i
2 2

C.

1 1
− i
2 2

1
2

1
2

D. − − i

Bài 45. Tìm tất cả giá trị của m để phương trình 2z 2 − (3 + 8i)z − m − 4i = 0 có một nghiệm thực.
C. m = −4
D. m = −3


n
n
Bài 46. Tìm các số hữu tỷ n sao cho − 3 + i + − 3 − i = 0
3 − 6k
6 − 3k
A. n =
với k ∈ Z
B. n =
với k ∈ Z
5
5
3 + 6k
6 + 3k
C. n =
với k ∈ Z
D. n =
với k ∈ Z
5
5
A. m = 2

B. m = 1

Bài 47. Gọi z1 , z2 , z3 , z4 , z5 là 5 nghiệm phức của phương trình z 5 = 1 + i. Biểu diễn 5 nghiệm này
trên hệ trục tọa độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của
ngũ giác đều đó.

s
A.

3+

√ √
5 52
2

s
B.

5−

√ √
5 52
2

s
C.

5+

√ √
5 52
2

s
D.

3−

√ √
5 52
2

Bài 48. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị nhỏ nhất của |z|.
A. 16
B. 9
C. 12
D. 10
Bài 49. Cho số√phức z1 = 3 − 4i và z2√= −4 + 7i. Tìm modulus
√ của số phức z = z1 + z2√
A. |z| = 2 10
B. |z| = 7
C. |z| = 10
D. |z| = 4 2
1−i
1+i
Bài 50. Tìm modulus của số phức z =
+
.
2 + 3i 2 − 5i
r
20
2
5
A. |z| =
B. |z| =
C. |z| =
377
13
13

r
D. |z| =

20
37

Bùi Thế Việt - Trang 5/11

Bài 51. Nhà toán học Rafael Bombelli (1526-1572) đã tình cờ phát hiện ra số phức khi nghiên cứu
phương trình bậc 3. Ông cho rằng phương trình x3 − 3x + 1 = 0 tồn tại nghiệm
p

3
−4 + 4 −3
2
+p
A=

3
2
−4 + 4 −3
Nhà toán học Abraham de Moivre (1667-1754) phát hiện ra định lý :
(cos θ + i sin θ)n = cos nθ + i sin nθ
Sử dụng định lý Moivre, hãy rút gọn biểu thức A.



B. A = cos
+ i sin
A. A = 2 cos
9
9
9


− i sin
D. A = cos
9
9

C. A = 2 sin


9

Bài 52. Cho f (z) = z 3 + bz 2 + cz − 75 với b, c ∈ R. Biết f (−4 + 3i) = 0. Tìm b, c.
A. b = 5 và c = 1
B. b = 4 và c = 2
C. b = 2 và c = 4
D. b = 3 và c = 3
π
Bài 53. Cho số phức z có |z| = 2 và arg(z) = − . Tính u−1 .
6




1
3
3 1
1
3
3 1
A.
+
i
B.
+ i
C.

i
D.
− i
4
4
4
4
4
4
4
4


z−6
π
Bài 54. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
= .
z−2
4

A. Đường tròn đường kính 2√2 thuộc góc phần tư thứ hai
B. Đường tròn đường kính 4√2 thuộc góc phần tư thứ nhất
C. Đường tròn đường kính 2√2 thuộc góc phần tư thứ nhất
D. Đường tròn đường kính 4 2 thuộc góc phần tư thứ hai
Bài 55. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức w =
trên hệ trục tọa độ Oxy.
A. Đoạn thẳng AB với A(−1, 0) và B(1, 0).
C. Đoạn thẳng AB với A(0, −1) và B(0, 1).

z−1
z+1

B. Trục hoành
D. Trục tung

Bài 56. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện
|z − 1 − i| = 2|z − 5 − 2i|
2 
2

19
68
7
19
+ y−
=
B. Đường thẳng y =
x
A. Đường tròn x −
3
3
9
7

2 
2
7
19
7
68
C. Đường thẳng y =
x
D. Đường tròn x −
+ y−
=
19
3
3
9
Bài 57. Cho số phức z thỏa mãn |z| = 1 và z 2n 6= −1 với mọi n là số nguyên dương. Nhận xét nào
zn
sau đây là đúng khi nói về số phức w =
?
1 + z 2n
1
A. Tập hợp điểm biểu diễn của w là trục
B. |w| =
2
hoành
C. w là số thuần ảo
D. Phần ảo của w bằng 0

Bùi Thế Việt - Trang 6/11

Bài 58. Tìm các số thực x, y thỏa mãn
2x + 5iy − 3ix − 4y = 16 − 21i

A. x = −3 và y = 2

B. x = −7 và y = 4

C. x = 2 và y = −3

D. x = 6 và y = −5

z−1
z−2

Bài 59. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức w =
2
5
3
C. Phần thực của w là
4

1
4
6
D. Phần thực của w là −
5

A. Phần ảo của w là −

B. Phần ảo của w là

Bài 60. Tìm phần ảo của số phức z =
A. 3

26
+ i69
−3 + 2i

B. 6

Bài 61. Tìm phần thực của số phức z = 1 +

A. 256 3
B. 256

√ 9
3i

C. −6

D. −3





C. 256 2

D. 128 5

Bài 62. Cho các số phức z và w thỏa mãn zw 6= 1 và |z| = 1 hoặc |w| = 1. Cho A =
|A|
A. |A| = 1

B. |A| =

3
2

C. |A| =

1
2

z−w
. Tính
1 − zw

D. |A| = 2

Bài 63. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với a, b ∈ Z. Cho x, y
là 2 số nguyên Gaussian. Khi đó thương phép chia Euclid của x cho y là một số nguyên
x
Gaussian z sao cho z gần nhất khi biểu diễn trên hệ trục tọa độ. Tìm thương phép chia
y
10 + 9i
Euclid
4 − 7i
A. 2i
B. −1 + 2i
C. −1 + i
D. i
Bài 64. Cho số phức z thỏa mãn |z − 12 − 5i| = 3. Tìm giá trị lớn nhất của |z|.
A. 12
B. 10
C. 16
D. 9
Bài 65. Tìm phần thực của số phức z = ee
A. <(z) = ee sin 1 sin (e cos 1)
C. <(z) = ee sin 1 cos (e cos 1)

1+i

B. <(z) = ee cos 1 cos (e sin 1)
D. <(z) = ee cos 1 sin (e sin 1)

Bài 66. Một acgumen của số phức z 6= 0 là φ thì một acgumen của
A. 2φ + π

B. −φ2

C. −2φ

Bài 67. Tìm modulus
của số phức z = √
(2 − i) (1 − 3i).


A. |z| = 2 7
B. |z| = 4 2
C. |z| = 2 5

1

z2
D. −φ2 +

π
2


D. |z| = 5 2

Bài 68. Gọi z1 , z2 , z3 , z4 , z5 , z6 là 6 nghiệm phức của phương trình z 6 + 8 = 0. Tính |z1 | + |z2 | + |z3 | +
|z



√4 | + |z5 | + |z6 |.
A. 6 2
B. 3 2
C. 6 3
D. 2 3


Bài 69. Cho số phức z thỏa mãn z 2 +
3 + i z + 1 = 0. Modulus của z là :
p
p
p
p




A. |z| = 2 + 3
B. |z| = 3 − 2
C. |z| = 2 − 3
D. |z| = 3 + 2
Bùi Thế Việt - Trang 7/11

Bài 70. Cho số phức w và z thỏa mãn w =

5iz + i
. Nhận xét nào sau đây là sai ?
z+1

A. Nếu |z| = 1 thì |w − 5i| = |w − i|
B. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y = 3
D. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y =

C. z =

5
2

i−w
w − 5i

Bài 71. Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z là
A. Tập hợp các số thực dương
B. Tập hợp các số thực
C. Tập hợp các số thực không âm
D. Tập hợp các số phức không phải số ảo
Bài 72. Tìm số phức z thỏa mãn z 2 + 4z + 13 = 0.
A. z = 2 ± 3i
B. z = 4 ± 6i

C. z = −2 ± 3i

D. z = −4 ± 6i

Bài 73. Phần thực và phần ảo của số phức z = (1 + 2i)2 là :
A. Phần thực bằng 3, phần ảo bằng 4
B. Phần thực bằng −3, phần ảo bằng −4
C. Phần thực bằng −3, phần ảo bằng 4
D. Phần thực bằng 3, phần ảo bằng −4
Bài 74. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thỏa mãn

.
arg(z + 3 + 2i) =
4
A. Một đường tròn
B. Một đường thẳng
C. Một đoạn thẳng
D. Một tia
3
Bài 75. Cho z1 , z2 , z3 là ba nghiệm phức của phương trình z√
+ 8 = 0. Tính |z1 | + |z2 | √
+ |z3 |.
A. 3
B. 6
C. 2 + 3
D. 2 + 2 3
x
y
Bài 76. Cho các số thực x, y sao cho
+
= 2 + 4i. Tính x + y.
1+i 2−i
A. x + y = 8
B. x + y = 6
C. x + y = −2
D. x + y = 14

Bài 77. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng ?
A. Phần thực của z bằng −2, phần ảo của z bằng −7.
B. Phần thực của z bằng 2, phần ảo của z bằng 7.
C. Phần thực của z bằng 2, phần ảo của z bằng −7.
D. Phần thực của z bằng −2, phần ảo của z bằng 7.
Bài 78. √
Cho iz 3 + z 2 − z + i = 0. Khi đó giá trị của |z| là√:
A. 5
B. 1
C. 2

Bài 79. Tính Argument của số phức z = 3 − 2 + i.
11π


A. arg(z) =
B. arg(z) =
C. arg(z) =
12
7
7

D. 2

D. arg(z) =


12

3(z + 2)
= 5 − 2i. Khi đó giá trị của z là :
z + 2i
B. z = 3 − 2i
C. z = 3 + 2i
D. z = 5 + i

Bài 80. Cho số phức z thỏa mãn
A. z = 5 − i

Bài 81. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé nhất m và giá trị lớn nhất M của |z − i| là
A. m = 0, M = 2

B. m = 1, M = 2

C. m = 0, M =


2

D. m = 0, M = 1

Bùi Thế Việt - Trang 8/11

Bài 82. Cho số phức z =

(1 + 2i) (1 + i)
. Kết luận nào sau đây là đúng khi nói về argument của số
−2 − 3i

phức z.
A. arg(z) > 0
B. arg(z) không xác định
C. arg(z) < 0
D. arg(z) = 0

2 
2
a + bi
a − bi
Bài 83. Cho z =
+
. Khẳng định nào sau đây là đúng ?
a − bi
a + bi

A. z = z
B. |z| = a2 + b2
C. zz = |z|
D. z = z|z|


z
π
Bài 84. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg
= .
z − 4i
2
A. Nửa đường tròn bán kính 2 tâm (−2, 0) thuộc góc phần tư thứ tư
B. Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư
C. Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất
D. Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất
Bài 85. Cho số phức z thỏa mãn |z + 2 − 3i| = 4. Tập hợp các điểm biểu diễn của z trên hệ trục tọa
độ Oxy là :
A. Đường tròn đường kính 8
B. Đường tròn đường kính 4
C. Elip tiêu cự 8
D. Elip tiêu cự 4
Bài 86. Tính |z| với z =
A. |z| = √

4

46 53

(1 + i)4
.
(1 + 6i) (2 − 7i)
2
B. |z| = √ √
46 53

C. |z| = √

Bài 87. Tính i (1 + i) (1 − i)2 .
A. 2 + 2i
B. 7 − 12i
C. 4 + 6i

5


+ i sin
cos
17
17
Bài 88. Tìm phần ảo của số phức z = 
3 .


cos
− i sin
17
17
A. 0
B. 2
C. −1

2

37 53

D. |z| = √

4

37 53

D. 5 − 3i

D. 1

Bài 89. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức w = z−
thuộc một đường ellipse. Tìm tiêu cự của ellipse.
A. 8
B. 6
C. 4
(1 + i)17
Bài 90. Tính
(1 − i)16
A. 1 + i

B. −1 + i

Bài 91. Cho số phức z = cos θ + i sin θ. Tính z n +
A. 2 sin (n − 1) θ

B. 2 cos nθ

C. −1 − i

i
z

D. 2

D. 1 − i

1
với n là số nguyên dương.
zn
C. 2 cos (n − 1) θ
D. 2 sin nθ

Bài 92. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|.
A. Đường thẳng y = −4x + 1
B. Đường thẳng y = −3x + 4
C. Đường thẳng y = −5x + 3
D. Đường thẳng y = −x + 3
Bùi Thế Việt - Trang 9/11

Bài 93. Cho số phức z =

3− 2
A.
2



1
2 + 3i và w =
. Tìm phần ảo của zw.
√ 1+i

5−3 2
5− 2
B.
C.
2
2


1− 2
D.
2

Bài 94. Số phức z nào dưới đây thỏa mãn z 2 + z + 1 = 0


1
5
B. z = −
i
2 √2
5
3
D. z = +
i
2
2

A. Không có số phức z nào thỏa mãn.


3
1
C. z = − −
i
2
2

Bài 95. Tìm modulus
của số phức z =√2 − 5i.

B. |z| = 29
A. |z| = 17



C. |z| = 9 2

D. |z| =


31

Bài 96. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z| = |z − 6i|.
A. Đường thẳng x = 1
B. Đường thẳng y = 3
C. Đường thẳng x = 3
D. Đường thẳng y = 1
Bài 97. Số phức
nào dưới đây thỏa mãn z 2 = 1 + i.
r z√
r

1
2
1+ 2
3+ 2
A. z =
+p
+p
B. z =
√ i
√ i
2
2
2
+
2
2
3
+
2
r
r


2
1
3+ 2
1+ 2
−p
−p
D. z =
C. z =
√ i
√ i
2
2
3+ 2
2+2 2
Bài 98. Tập hợp điểm biểu diễn của số phức z trên hệ trục tọa độ Oxy thỏa mãn arg(z −1+i) = −
là :
A. Đường thẳng y = −x với x > 1
C. Đường tròn bán kính 1

π
4

B. Đường thẳng y = −x với x ≥ 1
D. Nửa đường tròn bán kính 1

Bài 99. Biết z = 5 − 2i là nghiệm của phương trình z 3 + (−5 + 2i) z 2 + 4z + 8i − 20 = 0. Tìm các
nghiệm còn lại của phương trình

√ trên.
C. z = 2 ± 5i
D. z = ±2i
A. z = ±i
B. z = ± 5i
Bài 100. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 5 − 3i| = 3.
A. (x + 5)2 + (y − 1)2 = 9
B. (x + 2)2 + (y + 1)2 = 9
C. (x − 5)2 + (y − 3)2 = 9
D. (x − 3)2 + (y + 1)2 = 3
Bài 101. Cho các số phức z1 và z2 thỏa mãn

1 + z1
1 + z2
= 3 + i và
= 3 − i. Đẳng thức nào sau đây
2 + z1
2 − z2

là đúng ?
A. 10z1 − 17z2 = 46 + 5i
B. 5z1 − 17z2 = −34 + 4i
C. 5z1 + 17z2 = 10 + 2i D. 10z1 + 17z2 = 2 − i

Bài 102. Tính√tổng tất cả các nghiệm của phương trình z 4 + 3z 2 − 28 = 0 trên trường số
√ phức.
A. 4 − 2 7i
B. 4
C. 0
D. 4 + 2 7i
Bài 103. Cho số phức z =
A. A =

42 19
+ i
25 25

1+i
1+i
. Tính A = z 2 +
2−i
z
24 19
42 19
B. A = −
− i
C. A =
− i
25 25
25 25

D. A =

24 19
− i
25 25

Bùi Thế Việt - Trang 10/11

Bài 104. Cho số phức z = 3 − 7i. Tìm phần thực và phần ảo của số phức z.
A. Phần thực bằng 3, phần ảo bằng −7i.
B. Phần thực bằng 3, phần ảo bằng 7i.
C. Phần thực bằng 3, phần ảo bằng −7.
D. Phần thực bằng 3, phần ảo bằng 7.
1−i
z + 2i = −3 + i. Tìm phần ảo của z.
Bài 105. Cho số phức z thỏa mãn
1+i
3+i+
z + 2i
37
37
19
19
A. − i
B. −
C. −
D. − i
17
17
51
51
2 − 3i +

Bùi Thế Việt - Trang 11/11