Cộng đồng chia sẻ tri thức Doc24.vn

14 đề thi học sinh giỏi Toán lớp 6 có đáp án

4a05d535c8d94643497508035527b059
Gửi bởi: Phạm Thọ Thái Dương vào ngày 2020-11-09 02:30:31 || Kiểu file: PDF Lượt xem: 130 | Lượt Download: 0 | File size: 0.953687 Mb

Nội dung tài liệu Xem trước tài liệu

Link tài liệu:
Tải xuống

Các tài liệu liên quan

Thông tin tài liệu

Đề số 1
Thời gian làm bài: 120 phút (không kể thời gian chép đề)
Bài 1 (3điểm)
a, Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng:

1
41

+

1
42

+

1
7
1
1
+ …+
+
>
12
79
80
43

Bài 2 (2,5điểm)
Tổng số trang của 8 quyển vở loại 1 ; 9 quyển vở loại 2 và 5 quyển vở loại 3 là 1980
trang. Số trang của một quyển vở loại 2 chỉ bằng

2
số trang của 1 quyển vở loại 1.
3

Số trang của 4 quyển vở loại 3 bằng số trang của 3 quyển vở loại 2. Tính số trang của
mỗi quyển vở mỗi loại.
Bài 3: (2điểm).
Tìm số tự nhiên n và chữ số a biết rằng:
1+ 2+ 3+ …….+ n = aaa
Bài 4 (2,5 điểm)
a, Cho 6 tia chung gốc. Có bao nhiêu góc trong hình vẽ ? Vì sao.
b, Vậy với n tia chung gốc. Có bao nhiêu góc trong hình vẽ.
Đề số 2
Thời gian làm bài 120 phút – (không kể thời gian chép đề)
Bài 1 (3điểm)

1.5.6  2.10.12  4.20.24  9.45.54
1.3.5  2.6.10  4.12.20  9.27.45
b. Chứng minh : Với k  N* ta luôn có : k  k  1 k  2   k  1 k  k  1  3.k  k  1 .

a. Tính nhanh:

A=

áp dụng tính tổng : S = 1.2  2.3  3.4  ...  n. n  1 .
Bài 2 (3điểm)
a.Chứng minh rằng : nếu  ab  cd  eg  11 thì : abc deg 11 .
b.Cho A = 2  22  23  ...  260. Chứng minh : A 3 ; 7 ; 15.
Bài 3 (2điểm). Chứng minh :

1 1 1
1
 3  4  ...  n < 1.
2
2 2 2
2

Bài 4(2 điểm).
a. Cho đoạn thẳng AB = 8cm. Điểm C thuộc đường thẳng AB sao cho BC = 4cm.
Tính độ dài đoạn thẳng AC.
b. Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau và không
có ba đường thẳng nào cùng đi qua một điểm. Tính số giao điểm của chúng.

1

Đề số 3
Thời gian làm bài: 120 phút.
Câu 1: (3đ)
Thực hiện phép tính bằng cách hợp lí :
636363.37  373737.63
1) A =
1  2  3  ....  2017
12 12 12
4
4
4 

12  

4  


6
19 37 53 :
17 19 2006 . 124242423
2) B = 1 .
1 3
3
5
5
5  237373735
41 

5  
 3 

3 37 53
17 19 2006 


Câu 2: (2đ)
Tìm các cặp số (a,b) sao cho : 4a5b 45
Câu 3: (2đ)
Cho A = 31 +32+33 + .....+ 32006
a) Thu gọn A
b) Tìm x để 2A+3 = 3x
Câu 4: (1đ)
20162016  1
20162015  1
So sánh: A =
và B =
20162017  1
20162016  1
Câu 5: (2đ)
Một học sinh đọc quyển sách trong 3 ngày. Ngày thứ nhất đọc được

2
số trang
5

3
số trang sách còn lại; ngày thứ 3 đọc được 80% số trang
5
sách còn lại và 3 trang cuối cùng. Hỏi cuốn sách có bao nhiêu trang?

sách; ngày thứ 2 đọc được

Đề số 4
Thời gian làm bài: 120 phút
Bài 1(2đ)
2006 2005  1
2006 2006  1
27  4500  135  550.2
a)Tính tổng S =
b) So sánh: A =
và B =
2  4  6  ....14  16  18
2007 2007  1
2006 2006  1

Bài 2 (2đ)
a. Chứng minh rằng: C = 2 + 22 + 2 + 3 +… + 299 + 2100 chia hết cho 31
b. Tính tổng C. Tìm x để 22x – 1 - 2 = C
Bài 3 (2đ)
Một số chia hết cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13. Hỏi số đó chia
cho1292 dư bao nhiêu
Bài 4 (2đ)
Trong đợt thi đua, lớp 6A có 42 bạn được từ 1 điểm 10 trở lên, 39 bạn được 2
điểm 10 trở lên, 14 bạn được từ 3 điểm 10 trở lên, 5 bạn được 4 điểm 10, không có ai
được trên 4 điểm 10. Tính xem trong đợt thi đua lớp 6A được bao nhiêu điểm 10
Câu 5 (2đ)
Cho 25 điểm trong đó không có 3 điểm thẳng hàng. Cứ qua 2 điểm ta vẽ một
đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng?
2

Nếu thay 25 điểm bằng n điểm thì số đường thẳng là bao nhiêu.
Đề số 5
Thời gian làm bài: 120 phút
Bài 1. Tính các giá trị của biểu thức.
a. A = 1 + 2 + 3 + 4 + .........+ 100
1 3 3
4
4
4
  ) 4  
3 7 53 :
17 19 2003 .
1 3
3
5
5
5
3 

5  
3 37 53
17 19 2003
1
1
1
1
1
c. C =



 ... 
1.2 2.3 3.4 4.5
99.100
1
b. B = -1 .
5

4(3 

Bài 2. So sánh các biểu thức :
a. 3200 và 2300
121212 2
404
10
với B = .
 
171717 17 1717
17
Bài 3. Cho 1số có 4 chữ số: *26* . Điền các chữ số thích hợp vào dấu (*) để được

b. A =

số có 4 chữ số khác nhau chia hết cho tất cả 4số : 2; 3 ; 5 ; 9.
Bài 4. Tìm số tự nhiên n sao cho : 1! +2! +3! +...+n! là số chính phương?
Bài 5. Hai xe ôtô khởi hành từ hai địa điểm A,B đi ngược chiều nhau. Xe thứ nhất
khởi hành từ A lúc 7 giờ. Xe thứ hai khởi hành từ B lúc 7 giờ 10 phút. Biết rằng để đi
cả quãng đường AB . Xe thứ nhất cần 2 giờ , xe thứ hai cần 3 giờ. Hỏi sau khi đi 2 xe
gặp nhau lúc mấy giờ?
Bài 6. Cho góc xOy có số đo bằng 1200 . Điểm A nằm trong góc xOy sao cho:
AOy =750 . Điểm B nằm ngoài góc xOy mà : BOx =1350 . Hỏi 3 điểm A,O,B có thẳng
hàng không? Vì sao?
Đề số 6

Thời gian làm bài: 120’
Bài 1:(1,5đ) Tìm x
a) 5x = 125;
b) 32x = 81 ;
c) 52x-3 – 2.52 = 52.3
Bài 2: (1,5đ) Cho a là số nguyên. Chứng minh rằng: a  5  5  a  5
Bài 3: (1,5đ) Cho a là một số nguyên. Chứng minh rằng:
a. Nếu a dương thì số liền sau a cũng dương.
b. Nếu a âm thì số liền trước a cũng âm.
c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?
Bài 4: (2đ)Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng
minh rằng tổng của 31 số đó là số dương.
Bài 5: (2đ)
Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi
số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận
được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Bài 6: (1,5đ)
Cho tia Ox. Trên hai nữa mặt phẳng đối nhău có bờ là Ox. Vẽ hai tia Oy và Oz sao
cho góc xOy và xOz bắng 1200. Chứng minh rằng:
a. xOy  xOz  yOz
b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.
3

Đề số 7
Thời gian làm bài 120 phút
Bài 1( 8 điểm )
1. Tìm chữ số tận cùng của các số sau:
a) 571999
b) 931999
2. Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5.
3 . Cho phân số

a
( a b

a
?
b
4. Cho số 155 * 710 * 4 *16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các

hay bé hơn

chưc số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho
396.
5. chứng minh rằng:
a)

1 1 1 1
1
1 1
   

 ;
2 4 8 16 32 64 3

b)

1 2
3
4
99 100 3
 2  3  4  ...  99  100 
3 3
16
3 3
3
3

Bài 2: (2 điểm )
Trên tia Ox xác định các điểm A và B sao cho OA = a(cm), OB = b (cm)
a) Tính độ dài đoạn thẳng AB, biết b< a
b) Xác định điểm M trên tia Ox sao cho OM =

1
(a+b).
2

Đề số 8
Thời gian làm bài: 120 phút
Câu 1: (2đ)
Thay (*) bằng các số thích hợp để
a) 510* ; 61*16 chia hết cho 3.
b) 261* chia hết cho 2 và chia 3 dư 1
Câu 2: (1,5đ)
Tính tổng S = 1.2 + 2.3 + 3.4 + ... + 99.100
Câu 3: (3,5 đ)
Trên con đường đi qua 3 địa điểm A; B; C (B nằm giữa A và C) có hai người
đi xe máy Hùng và Dũng. Hùng xuất phát từ A, Dũng xuất phát từ B. Họ cùng khởi
hành lúc 8 giờ để cùng đến C vào lúc 11 giờ cùng ngày. Ninh đi xe đạp từ C về phía
A, gặp Dũng luc 9 giờ và gặp Hùng lúc 9 giờ 24 phút. Biết quãng đường AB dài 30
km, vận tốc của ninh bằng 1/4 vận tốc của Hùng. Tính quãng đường BC
Câu 4: (2đ)
Trên đoạn thẳng AB lấy 2006 điểm khác nhau đặt tên theo thứ từ từ A đến B là A 1;
A2; A3; ...; A2004. Từ điểm M không nằm trên đoạn thẳng AB ta nối M với các điểm
A; A1; A2; A3; ...; A2004 ; B. Tính số tam giác tạo thành
Câu 5: (1đ)

4

Tích của hai phân số là

8
56
. Thêm 4 đơn vị vào phân số thứ nhất thì tích mới là
.
15
15

Tìm hai phân số đó.

Đề số 9
Thời gian làm bài 120 phút
Câu 1 : (2 điểm) Cho biểu thức A 

a 3  2a 2  1
a 3  2a 2  2a  1

a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là
một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc  n2  1 và cba  (n  2)2
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)

an
a

bn
b
10
10  1
B = 11
. So sánh A và B.
10  1

a. Cho a, b, n  N* Hãy so sánh
1011  1
b. Cho A = 12 ;
10  1

Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có
một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không
có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Đề số 10
Thời gian làm bài: 120 phút
1 1 1
1
 3  ...  100
2
3 3 3
3

Câu 1: Tính tổng A  

Câu 2: Tìm số tự nhiên a, b, c, d nhỏ nhất sao cho:
a 5 b 12 c 6
 ;  ; 
b 3 c 21 d 11

Câu 3: Cho 2 dãy số tự nhiên 1, 2, 3, ..., 50
a) Tìm hai số thuộc dãy trên sao cho ƯCLN của chúng đạt giá trị lớn nhất.
b) Tìm hai số thuộc dãy trên sao cho BCNN của chúng đạt giá trị lớn nhất.
Câu 4: Cho bốn tia OA, OB, OC, OD, tạo thành các góc AOB, BOC, COD, DOA
không có điểm chung. Tính số đo của mổi góc ấy biết rằng: BOC = 3 AOB ;
COD = 5 AOB ; DOA = 6 AOB
5

Đề số 11
Thời gian làm bài: 120 phút
Câu 1: (3đ).
a. Kết quả điều tra ở một lớp học cho thấy: Có 20 học sinh thích bóng đá, 17 học sinh
thích bơi, 36 học sinh thích bóng chuyền, 14 học sinh thích đá bóng và bơi, 13 học
sinh thích bơi và bóng chuyền, 15 học sinh thích bóng đá và bóng chuyền, 10 học
sinh thích cả ba môn, 12 học sinh không thích môn nào. Tính xem lớp học đó có bao
nhiêu học sinh?
b. Cho số: A = 123456789101112 …….585960.
- Số A có bao nhiêu chữ số?
- Hãy xóa đi 100 chữ số trong số A sao cho số còn lại là:
+ Nhỏ nhất
+ Lớn nhất
Câu 2: (2đ).
a. Cho A = 5 + 52 + … + 596. Tìm chữ số tận cùng của A.
b.Tìm số tự nhiên n để: 6n + 3 chia hết cho 3n + 6
Câu 3: (3đ).
a. Tìm một số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 3 dư 2, cho 4 dư 3, cho 5
dư 4 và cho 10 dư 9.
b. Chứng minh rằng: 11n + 2 + 122n + 1 Chia hết cho 133.
Câu 4: (2đ). Cho n điểm trong đó không có 3 điểm nào thẳng hàng . Cứ qua hai
điểm ta vẽ 1 đường thẳng. Biết rằng có tất cả 105 đường thẳng. Tính n?
----------------------------------------------------------Đề số 12
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1:(2,25 điểm) Tìm x biết
a) x +

1
7

5 25

b) x -

4 5

9 11

c) (x – 32).45=0

Bài 2:(2,25 điểm) Tính tổng sau bằng cách hợp lý nhất:
A = 11 + 12 + 13 + 14 + …..+ 20.
B = 11 + 13 + 15 + 17 + …..+ 25.
C = 12 + 14 + 16 + 18 + …..+ 26.
Bài 3:(2,25 điểm) Tính:
5
5
5
5
1 1 1 1
1
1


 ... 
B=     
11.16 16.21 21.26
61.66
2 6 12 20 30 42
1
1
1
1

 ... 
 ... 
C=
1.2 2.3
1989.1990
2006.2007

A=

Bài 4:(1 điểm)
6

Cho: A=

102001  1
;
102002  1

B=

102002  1
.
102003  1

Hãy so sánh A và B.

Bài 5:(2,25 điểm)
Cho đoạn thẳng AB dài 7cm. Trên tia AB lấy điểm I sao cho AI = 4 cm. Trên tia BA
lấy điểm K sao cho BK = 2 cm.
a) Hãy chứng tỏ rằng I nằm giữa A và K.
b) Tính IK.
Đề số 13
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1: ( 3 điểm)
a. Chứng tỏ rằng tổng sau khôngm chia hết cho 10:
A = 405n + 2405 + m2 ( m,n  N; n ≠ 0 )
b. Tìm số tự nhiên n để các biểu thức sau là số tự nhiên:
B=

2n  2 5n  17
3n


n2
n  2 n2

c. Tìm các chữ số x ,y sao cho: C = x1995 y chia hết cho 55
Bài 2 (2 điểm )
10 10
10
10


 .... 
56 140 260
1400
3 3 3 3 3
b. Cho S =     . Chứng minh rằng : 1< S < 2
10 11 12 13 14

a. Tính tổng: M =

Bài 3 ( 2 điểm)
Hai người đi mua gạo. Người thứ nhất mua gạo nếp , người thứ hai mua gạo tẻ.
Giá gạo tẻ rẻ hơn giá gạo nếp là 20%. Biết khối lượng gạo tẻ người thứ hai mua nhiều
hơn khối lượng gạo nếp là 20%. Hỏi người nào trả tiền ít hơn? ít hơn mâya % so với
người kia?
Bài 4 ( 3 điểm)
Cho 2 điểm M và N nằm cùng phía đối với A, năm cùng phía đối với B. Điểm M
nằm giữa A và B. Biết AB = 5cm; AM = 3cm; BN = 1cm. Chứng tỏ rằng:
a. Bốn điểm A,B,M,N thẳng hàng
b. Điểm N là trung điểm của đoạn thẳng MB
c. Vẽ đường tròn tâm N đi qua B và đường tròng tâm A đi qua N, chúng cắt nhau tại
C, tính chu vi của ΔCAN .
Đề số 14
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
1
1
Bài 1( 2 điểm): a)Tìm x biết:  x     0 b) Tìm x, y  N biết 2x + 624 = 5y
2



3

4

Bài 2( 2 điểm):
a) So sánh:

 51
 22

103
45

b) So sánh:

A

2009 2010  2
2009 2009  1
B


2009 2011  2
2009 2010  1

Bài 3( 2 điểm): Tìm số tự nhiên có 3 chữ số, biết rằng khi chia số đó cho các số 25 ;
28 ; 35 thì được các số dư lần lượt là 5 ; 8 ; 15.
Bài 4( 2 điểm):
7

Ba máy bơm cùng bơm vào một bể lớn , nếu dùng cả máy một và máy hai thì sau 1
giờ 20 phút bể sẽ đầy, dùng máy hai và máy ba thì sau 1 giờ 30 phút bể sẽ đầy còn
nếu dùng máy một và máy ba thì bể sẽ đầy sau 2 giờ 24 phút. Hỏi nếu mỗi máy bơm
được dùng một mình thì bể sẽ đầy sau bao lâu?
Bài 5( 2 điểm): Cho góc tù xOy. Bên trong góc xOy, vẽ tia Om sao cho góc xOm
bằng 900 và vẽ tia On sao cho góc yOn bằng 900.
a) Chứng minh góc xOn bằng góc yOm.
b) Gọi Ot là tia phân giác của góc xOy.Chứng minh Ot cũng là tia phân giác của
góc mOn.
ĐỀ SỐ 15
Thời gian làm bài: 120 phút.
Bài 1: (6,0 điểm).Tính nhanh:
a) A =

32 32
32
32


 ...... 
1.4 4.7 7.10
97.100

b) B = (-528) + (-12) + (-211) + 540 + 2225
1  3  32  33  ...  32012
c) M =
32014  3
2
2
2
2
2
2





20 30 42 56 72 90
11
5
11
5
e) So sánh: N = 2005  2006 và M = 2005  2006
10
10
10
10

d) D =

Bài 2: (3,0 điểm)
Cho S = 1 – 3 + 32 – 33 + ... + 398 – 399.
a) Chứng minh rằng S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
Bà i 3: (5,0 đ iể m).
a) Tìm hai số tự nhiên biết tổng của chúng bằng 504 và ƯCLN của chúng bằng 42
b) Tìm a  N để a + 1 là bội của a – 1
c) Cho K = 1028 + 8. Chứng minh rằng K chia hết cho 72
Bài 4: (4,0 điểm). Trên đường thẳng AM lấy một điểm O (O nằm giữa A và M). Trên
cùng một nửa mặt phẳng bờ AM vẽ các tia OB, OC sao cho: góc MOC = 1150; góc
BOC = 700. Trên nửa mặt phẳng đối diện dựng tia OD (D không cùng nằm trong nửa
mặt phẳng với B,C qua bờ là AM) sao cho góc AOD = 450.
a) Tia OB nằm giữa hai tia OM, OC không? vì sao?
b) Tính góc MOB và góc AOC ?
c) Chứng tỏ rằng 3 điểm D, O, B thẳng hàng.
Bà i 5: (2,0 đ iể m). Trong mét cuéc thi cã 50 c©u hái. Mçi c©u tr¶ lêi ®óng ®-îc 20
®iÓm, cßn tr¶ lêi sai bÞ trõ 15 ®iÓm. Mét häc sinh ®-îc tÊt c¶ 650 ®iÓm. Hái b¹n ®ã tr¶
lêi ®-îc mÊy c©u ®óng ?
Họ và tên thí sinh:.............................................Số báo danh: ................................

8

Đề số 1
Thời gian làm bài: 120 phút (không kể thời gian chép đề)
Bài 1 (3điểm)
a, Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng:

1
41

+

1
42

+

1
7
1
1
+ …+
+
>
12
79
80
43

Bài 2 (2,5điểm)
Tổng số trang của 8 quyển vở loại 1 ; 9 quyển vở loại 2 và 5 quyển vở loại 3 là 1980
trang. Số trang của một quyển vở loại 2 chỉ bằng

2
số trang của 1 quyển vở loại 1.
3

Số trang của 4 quyển vở loại 3 bằng số trang của 3 quyển vở loại 2. Tính số trang của
mỗi quyển vở mỗi loại.
Bài 3: (2điểm).
Tìm số tự nhiên n và chữ số a biết rằng:
1+ 2+ 3+ …….+ n = aaa
Bài 4 (2,5 điểm)
a, Cho 6 tia chung gốc. Có bao nhiêu góc trong hình vẽ ? Vì sao.
b, Vậy với n tia chung gốc. Có bao nhiêu góc trong hình vẽ.
Đáp án đề số 1
Bài 1:
a) (1,5đ). Để chứng minh A  5, ta xét chữ số tận cùng của A bằng việc xét chữ số
tận cùng của từng số hạng. Ta có: 31999 = ( 34)499 . 33 = 81499. 27
Suy ra: 31999 có tận cùng là 7
71997 = ( 74)499 .7 = 2041499 . 7  7 1997 Có tận cùng là 7
Vậy A có tận cùng bằng 0  A  5
1
1
đến
có 40 phân số.
41
80
1
1
1
1
1
1
Vậy :    ......   
41 42 43
78 79 80
1
1
1
1
1
1
1
1
 )
= (   ......   ) + (   …….+
41 42
59 60
61 62
79 80
1
1
1
1
1
1
 .  …..>


>
>…>
41 42
60
62
61
80

b) (1,5điểm) Ta thấy:

9

(1)
(2)

1
1
1
1
1
1
1
1
) + ( + +….+  )


 ….+
60 60
80 80
60 60
80 80
20 20 1 1 4  3 7
=

  

60 80 3 4
12
12

Ta có : (

(3)

Từ (1) , (2), (3) Suy ra:
1
1
7
1
1
1
1
>


 ...... 


41 42 43
78 79 80 12

Bài 2: Vì số trang của mỗi quyển vỡ loại 2 bằng

2
số trang của 1 quyển loại 1.
3

Nên số trang của 3 quyển loại 2 bằng số trang của 2 quyển loại 1
Mà số trang của 4 quyển loại 3 bằng 3 quyển loại 2.
Nên số trang của 2 quyển loại 1 bằng số trang của 4 quyển loại 3
Do đó số trang của 8 quyển loại 1 bằng :
4 .8 : 2 = 16 ( quyển loại 3)
Số trang của 9 quyển loại 2 bằng
9 .4 : 3 = 12 (quỷên loại 3)
Vậy 1980 chính là số trang của 16 + 12+ 5 = 33(quyển loại 3)
Suy ra: Số trang 1 quyển vở loại 3 là 1980 : 33 = 60 ( trang)
60.4
 80 (trang)
3
80.3
Số trang 1 quyển vở loại1 là;
 120 ( trang)
2

Số trang 1 quyển vở loại 2 là

Bài 3:
Từ 1; 2; ………; n có n số hạng
Suy ra 1 +2 +…+ n =

(n  1).n
2

Mà theo bài ra ta có 1 +2 +3+…..+n = aaa
Suy ra

(n  1).n
= aaa = a . 111 = a . 3.37
2

Suy ra: n(n + 1) = 2.3.37.a
Vì tích n(n + 1) Chia hết cho số nguyên tố 37 nên n hoặc n + 1 Chia hết cho 37
(n  1).n
có 3 chữ số Suy ra n+1 < 74  n = 37 hoặc n + 1 = 37
2
37.38
+) Với n = 37 thì
 703 ( loại)
2
36.37
+) Với n + 1 = 37 thì
( thoả mãn)
 666
2

Vì số

Vậy n =36 và a = 6. Ta có: 1+2+3+…..+ 36 = 666
Bài 4 :
a) (1,5điểm)
Vì mỗi tia với 1 tia còn lại tạo thành 1 góc. Xét 1 tia, tia đó cùng với 5 tia còn lại tạo
thành 5 góc. Làm như vậy với 6 tia ta được 5.6 góc. Nhưng mỗi góc đã được tính 2
lần do đó có tất cả là

5.6
 15 góc
2

b) (1điểm). Từ câu a suy ra tổng quát. Với n tia chung gốc có n(

n 1
) (góc).
2

Đề số 2
Thời gian làm bài 120 phút – (không kể thời gianchép đề)

10